General Relativity and Quantum Cosmology
[Submitted on 1 Sep 2023 (v1), last revised 6 Jun 2024 (this version, v4)]
Title:Quark stars with a unified interacting equation of state in regularized 4D Einstein-Gauss-Bonnet gravity
View PDF HTML (experimental)Abstract:Since the derivation of a well-defined $D\rightarrow 4$ limit for 4D Einstein Gauss-Bonnet (4DEGB) gravity coupled to a scalar field, there has been interest in testing it as an alternative to Einstein's general theory of relativity. Using the Tolman-Oppenheimer-Volkoff (TOV) equations modified for 4DEGB gravity, we model the stellar structure of quark stars using a novel interacting quark matter equation of state. We find that increasing the Gauss-Bonnet coupling constant $\alpha$ or the interaction parameter $\lambda$ both tend to increase the mass-radius profiles of quark stars described by this theory, allowing a given central pressure to support larger quark stars in general. These results logically extend to cases where $\lambda < 0$, in which increasing the magnitude of the interaction effects instead diminishes masses and radii. We also analytically identify a critical central pressure in both regimes, below which no quark star solutions exist due to the pressure function having no roots. Most interestingly, we find that quark stars can exist below the general relativistic Buchdahl bound and Schwarzschild radius $R=2M$, due to the lack of a mass gap between black holes and compact stars in 4DEGB. Even for small $\alpha$ well within current observational constraints, we find that quark star solutions in this theory can describe Extreme Compact Objects (ECOs), objects whose radii are smaller than what is allowed by general relativity.
Submission history
From: Michael Gammon [view email][v1] Fri, 1 Sep 2023 18:54:28 UTC (2,802 KB)
[v2] Fri, 19 Jan 2024 18:04:56 UTC (2,806 KB)
[v3] Tue, 6 Feb 2024 15:45:59 UTC (2,804 KB)
[v4] Thu, 6 Jun 2024 19:15:23 UTC (2,784 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.