\tikzfeynmanset

compat=1.1.0 \tikzfeynmanset/tikzfeynman/warn luatex = false

Direct signatures of the formation time of galaxies

Yaniv Donath Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, CB3 OWA, UK
   Matthew Lewandowski Institut für Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland    Leonardo Senatore Institut für Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland
Abstract

We show that it is possible to directly measure the formation time of galaxies using large-scale structure. In particular, we show that the large-scale distribution of galaxies is sensitive to whether galaxies form over a narrow period of time before their observed times, or are formed over a time scale on the order of the age of the Universe. Along the way, we derive simple recursion relations for the perturbative terms of the most general bias expansion for the galaxy density, thus fully extending the famous dark-matter recursion relations to generic tracers.

preprint:

I Introduction and conclusions

The establishment of the standard cosmological model, from the hot big bang at early times to the cosmological constant and cold dark-matter dominated late-time accelerated expansion, is one of the great triumphs of modern science. It gives a depiction of a dynamical Universe that has evolved over billions of years from a dense cosmic soup to a sparse sprinkling of stars, galaxies, and dark-matter halos. This familiar picture was not always obvious, however.

For example, there was much debate in the second half of the twentieth century about the so-called 1948 steady-state model of the Universe Bondi and Gold (1948). This model proposed that properties of the Universe, including number and types of galaxies, did not change over time. Empirical evidence, of course, eventually contradicted these ideas. One such set of evidence was the observation that properties of galaxies, including color and estimated ages, changed with their measured redshifts (see for example Stebbins and Whitford (1948); Gamow (1954)), suggesting that the galaxies themselves evolved over time. This confusion, though, is understandable. Indeed, we cannot watch objects in the Universe evolve for very long; we can only see static snapshots at various times in the past, making it quite challenging to directly probe cosmic time scales.

A concept that is related to, but distinct from, the time scale of cosmic evolution is what we call a cosmic response time, i.e. the temporal extent to which the past influences galaxies at a given time.111Mathematically, this is the time scale of support of the Green’s function describing the response. This in turn is related to the formation time of galaxies, which is at least as long as the response time.

In this work, we provide, as far as we can tell, the first directly cosmologically observable signals that are sensitive to the formation time of galaxies (or galaxy clusters and other gravitationally-bound objects in general). By studying the response time of galaxies, we show that the static pictures that we take of the Universe (in galaxy surveys, for example) can contain unique signatures that are only possible if galaxies have been forming over time periods on the order of the age of the Universe. Even if we have an incredibly large amount of evidence that this must be the case, the possibility of a direct cosmological observation is, to us, quite an extraordinary prospect.222We stress that in this work, we are not concerned with ages or generic evolution of structures (for which there is abundant astrophysical evidence, some of which we mentioned above), but with the response time of structures. Previous studies in this direction include numerical simulations and the so-called assembly bias Gao et al. (2005); Croton et al. (2007), although it can be challenging to directly relate the latter to galaxy formation time Mao et al. (2018).

Furthermore, since our reasoning is based on the effective field theory of large-scale structure (EFT of LSS, Baumann et al. (2012); Carrasco et al. (2012)), which is the unique theory of gravity, cold dark matter, baryons, and tracers on large scales, our conclusions do not depend on specific modeling choices about stars or galaxies. Given the recent success of using the EFT of LSS to analyze galaxy clustering data D’Amico et al. (2019); Ivanov et al. (2019); Colas et al. (2019); D’Amico et al. (2022a, b), we now have the intriguing opportunity to explore the Universe in this exciting new way.

It has been known for some time (see e.g. Coles (1993); Fry and Gaztanaga (1993)) that on large scales, the galaxy distribution can be expressed as a Taylor expansion in the fluctuations of the underlying dark-matter distribution, an approach that goes by the general name of the bias expansion (for a modern review, see Desjacques et al. (2018)). This makes intuitive sense, since galaxies tend to form in regions of space where the dark-matter density, and hence the gravitational potential, is highest. In McDonald and Roy (2009) it was argued that this dependence should be on second spatial derivatives of the gravitational potential and gradients of the dark-matter velocity, and a straightforward extension allows for a dependence on spatial derivatives of these quantities. But is galaxy clustering only affected by the nearby dark-matter distribution at the time that we measure it (local in time), or does the configuration of the dark matter at earlier times, of order a Hubble time earlier, have an impact (non-local in time)? Said another way, given two identical localized dark-matter configurations at a given time, will the same galaxies always form, or do we need to know the whole history of that configuration?

This question was conceptually answered in Senatore (2015), which pointed out that the most general dependence, based on the symmetries relevant to dark-matter and baryon dynamics and galaxy formation on large scales, which are the equivalence principle and diffeomorphism invariance (the non-relativistic limit of which is called Galilean invariance), is on second spatial derivatives of the gravitational potential, gradients of the matter velocity (and the relative velocity directly), and their spatial gradients, integrated over all past times. This makes the EFT of LSS generally local in space, but non-local in time.333See also Carrasco et al. (2014); Carroll et al. (2014) for discussions of non-local-in-time effects in dark-matter clustering.

However, until now, the most advanced perturbative calculations have shown that the non-local-in-time bias expansion up to fourth order is mathematically equivalent to the local-in-time expansion D’Amico et al. (2022c). As we show in this work, though, this is no longer true at fifth order, and thus it is possible to see distinctly non-local-in-time effects in the galaxy-clustering signal. Measuring the size of these effects would then give us a direct indication of the formation time scale of galaxies. As a side observation, this time scale would also give a direct (versus indirect) lower bound on the age of the Universe.

Notes

We work in the Newtonian approximation where Φ(x,t)Φ𝑥𝑡\Phi(\vec{x},t)roman_Φ ( over→ start_ARG italic_x end_ARG , italic_t ) is the gravitational potential, a(t)𝑎𝑡a(t)italic_a ( italic_t ) is the scale factor of the Universe, the Hubble parameter is defined by H(t)a˙(t)/a(t)𝐻𝑡˙𝑎𝑡𝑎𝑡H(t)\equiv\dot{a}(t)/a(t)italic_H ( italic_t ) ≡ over˙ start_ARG italic_a end_ARG ( italic_t ) / italic_a ( italic_t ), and the overdot ‘˙˙absent\,\dot{}\,over˙ start_ARG end_ARG’ stands for a derivative with respect to t𝑡titalic_t. The dark-matter fluid is described by the overdensity δ(x,t)𝛿𝑥𝑡\delta(\vec{x},t)italic_δ ( over→ start_ARG italic_x end_ARG , italic_t ) and fluid velocity v(x,t)𝑣𝑥𝑡\vec{v}(\vec{x},t)over→ start_ARG italic_v end_ARG ( over→ start_ARG italic_x end_ARG , italic_t ). The growth factor D(t)𝐷𝑡D(t)italic_D ( italic_t ) is defined as the growing mode solution to the linear equation of motion for δ𝛿\deltaitalic_δ, i.e. satisfies D¨+2HD˙3ΩmH2D/2=0¨𝐷2𝐻˙𝐷3subscriptΩmsuperscript𝐻2𝐷20\ddot{D}+2H\dot{D}-3\Omega_{\rm m}H^{2}D/2=0over¨ start_ARG italic_D end_ARG + 2 italic_H over˙ start_ARG italic_D end_ARG - 3 roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D / 2 = 0, where Ωm(t)subscriptΩm𝑡\Omega_{\rm m}(t)roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ( italic_t ) is the time-dependent matter fraction.

The building blocks of Galilean scalars are the dimensionless tensors

rij2ijΦ3Ωma2H2,andpijDaD˙ivj.formulae-sequencesubscript𝑟𝑖𝑗2subscript𝑖subscript𝑗Φ3subscriptΩmsuperscript𝑎2superscript𝐻2andsubscript𝑝𝑖𝑗𝐷𝑎˙𝐷subscript𝑖superscript𝑣𝑗r_{ij}\equiv\frac{2\partial_{i}\partial_{j}\Phi}{3\Omega_{\rm m}a^{2}H^{2}}\ ,% \quad\text{and}\quad p_{ij}\equiv-\frac{D}{a\dot{D}}\partial_{i}v^{j}\ .italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≡ divide start_ARG 2 ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_Φ end_ARG start_ARG 3 roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , and italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≡ - divide start_ARG italic_D end_ARG start_ARG italic_a over˙ start_ARG italic_D end_ARG end_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT . (1)

For brevity, we will always denote the traces δijrij=δsuperscript𝛿𝑖𝑗subscript𝑟𝑖𝑗𝛿\delta^{ij}r_{ij}=\deltaitalic_δ start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_δ (which is true because of the Poisson equation) and δijpijθsuperscript𝛿𝑖𝑗subscript𝑝𝑖𝑗𝜃\delta^{ij}p_{ij}\equiv\thetaitalic_δ start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≡ italic_θ (which is our definition of θ𝜃\thetaitalic_θ). Then, for other contractions, we write the matrix products as simple multiplication, i.e. r2=rijrjisuperscript𝑟2subscript𝑟𝑖𝑗subscript𝑟𝑗𝑖r^{2}=r_{ij}r_{ji}italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT, r2p=rijrjkpkisuperscript𝑟2𝑝subscript𝑟𝑖𝑗subscript𝑟𝑗𝑘subscript𝑝𝑘𝑖r^{2}p=r_{ij}r_{jk}p_{ki}italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p = italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT, rprp=rijpjkrklpli𝑟𝑝𝑟𝑝subscript𝑟𝑖𝑗subscript𝑝𝑗𝑘subscript𝑟𝑘𝑙subscript𝑝𝑙𝑖rprp=r_{ij}p_{jk}r_{kl}p_{li}italic_r italic_p italic_r italic_p = italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_l italic_i end_POSTSUBSCRIPT, and so on (repeated indices are always summed over). We work in the so-called Einstein-de Sitter approximation, where the time dependence of perturbations is given by

δ(n)(x,t)=(D(t)D(t))nδ(n)(x,t),θ(n)(x,t)=(D(t)D(t))nθ(n)(x,t).formulae-sequencesuperscript𝛿𝑛𝑥𝑡superscript𝐷𝑡𝐷superscript𝑡𝑛superscript𝛿𝑛𝑥superscript𝑡superscript𝜃𝑛𝑥𝑡superscript𝐷𝑡𝐷superscript𝑡𝑛superscript𝜃𝑛𝑥superscript𝑡\displaystyle\begin{split}\delta^{(n)}(\vec{x},t)&=\left(\frac{D(t)}{D(t^{% \prime})}\right)^{n}\delta^{(n)}(\vec{x},t^{\prime})\ ,\\ \theta^{(n)}(\vec{x},t)&=\left(\frac{D(t)}{D(t^{\prime})}\right)^{n}\theta^{(n% )}(\vec{x},t^{\prime})\ .\end{split}start_ROW start_CELL italic_δ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_CELL start_CELL = ( divide start_ARG italic_D ( italic_t ) end_ARG start_ARG italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , end_CELL end_ROW start_ROW start_CELL italic_θ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_CELL start_CELL = ( divide start_ARG italic_D ( italic_t ) end_ARG start_ARG italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_θ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . end_CELL end_ROW (2)

In this work, we focus on the lowest-derivative bias terms that are sufficient to establish our claims, and leave a discussion of higher-derivative bias (and counterterms) for future work. Finally, we focus on the real space (as opposed to redshift space) prediction, which in any case is the leading signal if one restricts observations to directions near the line of sight. We leave extending our results to redshift space to future work. For a much more detailed explanation of the notation used here, see D’Amico et al. (2022c).

II Complete bias expansion and recursion

We start by constructing the most general bias expansion for the galaxy overdensity δg(x,t)(ng(x,t)n¯g(t))/n¯g(t)subscript𝛿𝑔𝑥𝑡subscript𝑛𝑔𝑥𝑡subscript¯𝑛𝑔𝑡subscript¯𝑛𝑔𝑡\delta_{g}(\vec{x},t)\equiv(n_{g}(\vec{x},t)-\bar{n}_{g}(t))/\bar{n}_{g}(t)italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) ≡ ( italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) - over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_t ) ) / over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_t ), where ng(x,t)subscript𝑛𝑔𝑥𝑡n_{g}(\vec{x},t)italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) is the galaxy number-density field and n¯g(t)subscript¯𝑛𝑔𝑡\bar{n}_{g}(t)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_t ) is the average number density of galaxies, that is consistent with the equivalence principle, diffeomorphism invariance, and is non-local in time. Up to N𝑁Nitalic_N-th order in perturbations, we have

δg(x,t)|N=n=1Nδg(n)(x,t),evaluated-atsubscript𝛿𝑔𝑥𝑡𝑁superscriptsubscript𝑛1𝑁superscriptsubscript𝛿𝑔𝑛𝑥𝑡\delta_{g}(\vec{x},t)\big{|}_{N}=\sum_{n=1}^{N}\delta_{g}^{(n)}(\vec{x},t)\ ,italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) | start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (3)

where the expression at n𝑛nitalic_n-th order is given by the non-local-in-time integral over the sum of all possible local-in-time functions 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT up to order n𝑛nitalic_n Senatore (2015)

δg(n)(x,t)=𝒪mt𝑑tH(t)c𝒪m(t,t)×[𝒪m(xfl(x,t,t),t)](n),superscriptsubscript𝛿𝑔𝑛𝑥𝑡subscriptsubscript𝒪𝑚superscript𝑡differential-dsuperscript𝑡𝐻superscript𝑡subscript𝑐subscript𝒪𝑚𝑡superscript𝑡superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛\displaystyle\begin{split}\delta_{g}^{(n)}(\vec{x},t)&=\sum_{\mathcal{O}_{m}}% \int^{t}dt^{\prime}H(t^{\prime})c_{\mathcal{O}_{m}}(t,t^{\prime})\\ &\hskip 50.58878pt\times[\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime}% ),t^{\prime})]^{(n)}\ ,\end{split}start_ROW start_CELL italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_CELL start_CELL = ∑ start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∫ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_H ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL × [ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT , end_CELL end_ROW (4)

evaluated along the fluid element

xfl(x,t,t)=x+ttdt′′a(t′′)v(xfl(x,t,t′′),t′′),subscript𝑥fl𝑥𝑡superscript𝑡𝑥superscriptsubscript𝑡superscript𝑡𝑑superscript𝑡′′𝑎superscript𝑡′′𝑣subscript𝑥fl𝑥𝑡superscript𝑡′′superscript𝑡′′\vec{x}_{\rm fl}(\vec{x},t,t^{\prime})=\vec{x}+\int_{t}^{t^{\prime}}\frac{dt^{% \prime\prime}}{a(t^{\prime\prime})}\vec{v}\left(\vec{x}_{\rm fl}(\vec{x},t,t^{% \prime\prime}),t^{\prime\prime}\right)\ ,over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = over→ start_ARG italic_x end_ARG + ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_d italic_t start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a ( italic_t start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) end_ARG over→ start_ARG italic_v end_ARG ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) , (5)

and we use the square brackets and superscript notation [](n)superscriptdelimited-[]𝑛[\cdot]^{(n)}[ ⋅ ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT to mean that we perturbatively expand the expression inside of the brackets and take the n𝑛nitalic_n-th order piece.444 There was an interesting discussion Camelio and Lombardi (2015) as to whether intrinsic alignments (see Vlah et al. (2020) for an EFT description) of galaxies are most affected by the gravitational field at late or early times Catelan et al. (2001); Hirata and Seljak (2004); Schmitz et al. (2018). Our non-local-in-time bias expansion Eq. (4) takes both possibilities into account. Neglecting baryons, as they are a small effect Lewandowski et al. (2015); Bragança et al. (2020), in Eq. (4), since δgsubscript𝛿𝑔\delta_{g}italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT is a Galilean scalar, the equivalence principle implies that the set of functions {𝒪m}subscript𝒪𝑚\{\mathcal{O}_{m}\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } is given by all possible rotationally invariant contractions of the dark-matter fields rijsubscript𝑟𝑖𝑗r_{ij}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and pijsubscript𝑝𝑖𝑗p_{ij}italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, and integrating the 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT along the fluid element is the most general way to write a non-local-in-time expression for δgsubscript𝛿𝑔\delta_{g}italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT. All of the complicated details of galaxy-formation physics is then encoded in the functions c𝒪msubscript𝑐subscript𝒪𝑚c_{\mathcal{O}_{m}}italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT, which are a priori unknown (from the EFT point of view) time-dependent kernels, which physically can be thought of as the response of the galaxy overdensity to a given field at a given time. The local-in-time expansion is given by setting c𝒪m(t,t)=c𝒪m(t)δD(tt)/H(t)subscript𝑐subscript𝒪𝑚𝑡superscript𝑡subscript𝑐subscript𝒪𝑚𝑡subscript𝛿𝐷𝑡superscript𝑡𝐻𝑡c_{\mathcal{O}_{m}}(t,t^{\prime})=c_{\mathcal{O}_{m}}(t)\delta_{D}(t-t^{\prime% })/H(t)italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) italic_δ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( italic_t - italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) / italic_H ( italic_t ). Notice that we do not include any time derivatives of rijsubscript𝑟𝑖𝑗r_{ij}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT or pijsubscript𝑝𝑖𝑗p_{ij}italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT in the set {𝒪m}subscript𝒪𝑚\{\mathcal{O}_{m}\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } because these operators are not present in the strictly local-in-time limit (i.e. they would be suppressed with respect to other terms by H/ωshort1much-less-than𝐻subscript𝜔short1H/\omega_{\rm short}\ll 1italic_H / italic_ω start_POSTSUBSCRIPT roman_short end_POSTSUBSCRIPT ≪ 1 where 1/ωshort1subscript𝜔short1/\omega_{\rm short}1 / italic_ω start_POSTSUBSCRIPT roman_short end_POSTSUBSCRIPT is the time-scale of the relevant local-in-time physics) Senatore (2015). Thus, our expansion covers all Hubble-scale non-local-in-time effects. From now on, in the list of functions {𝒪m}subscript𝒪𝑚\{\mathcal{O}_{m}\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT }, we identify the subscript m𝑚mitalic_m on 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT to denote that the function starts at order m𝑚mitalic_m, i.e. m=3𝑚3m=3italic_m = 3 for δ2θ,δ3,r2p,superscript𝛿2𝜃superscript𝛿3superscript𝑟2𝑝\delta^{2}\theta,\delta^{3},r^{2}p,\dotsitalic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ , italic_δ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p , ….

In this way, the bias expansion at order n𝑛nitalic_n is reduced to an algorithmic procedure. To create the list of seed functions {𝒪m}subscript𝒪𝑚\{\mathcal{O}_{m}\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT }, we list all contractions up to n𝑛nitalic_n factors of rijsubscript𝑟𝑖𝑗r_{ij}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and pijsubscript𝑝𝑖𝑗p_{ij}italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT. We then iteratively Taylor expand 𝒪m(xfl(x,t,t),t)subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime}),t^{\prime})caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) around x𝑥\vec{x}over→ start_ARG italic_x end_ARG using the recursive definition Eq. (5), and take the n𝑛nitalic_n-th order piece. After performing this expansion, we end up with an expression that can be cast in the following notation D’Amico et al. (2022c)

[𝒪m(xfl(x,t,t),t)](n)=α=1nm+1(D(t)D(t))α+m1𝒪m,α(n)(x,t).superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛superscriptsubscript𝛼1𝑛𝑚1superscript𝐷superscript𝑡𝐷𝑡𝛼𝑚1superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡\displaystyle\begin{split}&[\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{% \prime}),t^{\prime})]^{(n)}=\\ &\hskip 50.58878pt\sum_{\alpha=1}^{n-m+1}\left(\frac{D(t^{\prime})}{D(t)}% \right)^{\alpha+m-1}\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)\ .% \end{split}start_ROW start_CELL end_CELL start_CELL [ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_D ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT italic_α + italic_m - 1 end_POSTSUPERSCRIPT blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) . end_CELL end_ROW (6)

The resulting bias functions 𝒪m,α(n)superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT, which we say are in the fluid expansion of the seed function 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, are defined by the expansion in Eq. (LABEL:omordern), whose form is guaranteed by assuming the scaling time dependence of the dark-matter fields Eq. (2), as well as the implied relation

𝒪m,α(n)(x,t)=(D(t)D(t))n𝒪m,α(n)(x,t).superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡superscript𝐷𝑡𝐷superscript𝑡𝑛superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥superscript𝑡\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)=\left(\frac{D(t)}{D(t^{% \prime})}\right)^{n}\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t^{% \prime})\ .blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ( divide start_ARG italic_D ( italic_t ) end_ARG start_ARG italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . (7)

Plugging Eq. (LABEL:omordern) into Eq. (4), and defining the expansion coefficients

c𝒪m,α(t)t𝑑tH(t)c𝒪m(t,t)(D(t)D(t))α+m1,subscript𝑐subscript𝒪𝑚𝛼𝑡superscript𝑡differential-dsuperscript𝑡𝐻superscript𝑡subscript𝑐subscript𝒪𝑚𝑡superscript𝑡superscript𝐷superscript𝑡𝐷𝑡𝛼𝑚1c_{\mathcal{O}_{m},\alpha}(t)\equiv\int^{t}dt^{\prime}H(t^{\prime})c_{\mathcal% {O}_{m}}(t,t^{\prime})\left(\frac{D(t^{\prime})}{D(t)}\right)^{\alpha+m-1}\ ,italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) ≡ ∫ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_H ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ( divide start_ARG italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_D ( italic_t ) end_ARG ) start_POSTSUPERSCRIPT italic_α + italic_m - 1 end_POSTSUPERSCRIPT , (8)

we finally have the most general expansion of the overdensity at order n𝑛nitalic_n in terms of fields at the same time

δg(n)(x,t)=𝒪mα=1nm+1c𝒪m,α(t)𝒪m,α(n)(x,t).subscriptsuperscript𝛿𝑛𝑔𝑥𝑡subscriptsubscript𝒪𝑚superscriptsubscript𝛼1𝑛𝑚1subscript𝑐subscript𝒪𝑚𝛼𝑡subscriptsuperscript𝑛subscript𝒪𝑚𝛼𝑥𝑡\delta^{(n)}_{g}(\vec{x},t)=\sum_{\mathcal{O}_{m}}\sum_{\alpha=1}^{n-m+1}c_{% \mathcal{O}_{m},\alpha}(t)\,\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}(\vec{x},% t)\ .italic_δ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) . (9)

There is in fact a much simpler way to obtain the bias functions 𝒪m,α(n)superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT, using recursion relations, which is an additional key technical result of this work. While the procedure described above is conceptually straightforward, it can be practically quite cumbersome (see the derivation at fourth order in D’Amico et al. (2022c), for example). The recursion relations come in two parts. The first is the equal-time completeness relation

𝒪m(n)(x,t)=α=1nm+1𝒪m,α(n)(x,t),superscriptsubscript𝒪𝑚𝑛𝑥𝑡superscriptsubscript𝛼1𝑛𝑚1superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡\mathcal{O}_{m}^{(n)}(\vec{x},t)=\sum_{\alpha=1}^{n-m+1}\mathbb{C}_{\mathcal{O% }_{m},\alpha}^{(n)}(\vec{x},t)\ ,caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (10)

which is trivially obtained by setting t=t𝑡superscript𝑡t=t^{\prime}italic_t = italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT in Eq. (LABEL:omordern), and where 𝒪m(n)superscriptsubscript𝒪𝑚𝑛\mathcal{O}_{m}^{(n)}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT is the standard expansion of 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT at n𝑛nitalic_n-th order in perturbations. The second, which captures the consequences of expanding xflsubscript𝑥fl\vec{x}_{\rm fl}over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT in Eq. (LABEL:omordern), is the fluid recursion

𝒪m,α(n)(x,t)=superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡absent\displaystyle\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)=blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = (11)
1nαm+1=m+α1n1i𝒪m,α()(x,t)i2θ(n)(x,t),1𝑛𝛼𝑚1superscriptsubscript𝑚𝛼1𝑛1subscript𝑖subscriptsuperscriptsubscript𝒪𝑚𝛼𝑥𝑡subscript𝑖superscript2superscript𝜃𝑛𝑥𝑡\displaystyle\frac{1}{n-\alpha-m+1}\sum_{\ell=m+\alpha-1}^{n-1}\partial_{i}% \mathbb{C}^{(\ell)}_{\mathcal{O}_{m},\alpha}(\vec{x},t)\frac{\partial_{i}}{% \partial^{2}}\theta^{(n-\ell)}(\vec{x},t)\ ,divide start_ARG 1 end_ARG start_ARG italic_n - italic_α - italic_m + 1 end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = italic_m + italic_α - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) divide start_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_θ start_POSTSUPERSCRIPT ( italic_n - roman_ℓ ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) ,

which is valid for nαm+1>0𝑛𝛼𝑚10n-\alpha-m+1>0italic_n - italic_α - italic_m + 1 > 0. We explicitly derive Eq. (11) in App. A. This recursion is reminiscent of the famous dark-matter recursion relations Goroff et al. (1986), and provides, for the first time, a full generalization to generic biased tracers. We give a diagrammatic representation of this recursion relation in Fig. 1.

It is worth stressing that, unlike other treatments of biased tracers (such as Fry (1996); Tegmark and Peebles (1998) and subsequent works), we do not assume an instantaneous formation time of galaxies, nor do we assume a continuity equation for galaxies. Indeed, Eq. (11) is a consequence of Galilean invariance (i.e. expanding xflsubscript𝑥fl\vec{x}_{\rm fl}over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT), not of the conservation of galaxies.

Refer to caption
Figure 1: Diagrammatic representation of one way of using the recursion relations Eq. (10) and Eq. (11) to determine the full set of bias functions 𝒪m,α(n)subscriptsuperscript𝑛subscript𝒪𝑚𝛼\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT in the fluid expansion of a seed function 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. The red arrows indicate the use of the fluid recursion Eq. (11), while the blue arrows indicate the use of the completeness relation Eq. (10). Thus, the terms in the red shading (α<nm+1𝛼𝑛𝑚1\alpha<n-m+1italic_α < italic_n - italic_m + 1) are determined by the fluid recursion Eq. (11) and the terms in the blue shading (α=nm+1𝛼𝑛𝑚1\alpha=n-m+1italic_α = italic_n - italic_m + 1) are determined by the completeness relation Eq. (10).

Since we have formally done the integral over tsuperscript𝑡t^{\prime}italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT in Eq. (8), one might wonder where in Eq. (9) the non-local-in-time effect has gone. Comparing Eq. (9) to the local-in-time expression

δg,loc(n)(x,t)=𝒪mc𝒪m(t)𝒪m(n)(x,t),subscriptsuperscript𝛿𝑛𝑔loc𝑥𝑡subscriptsubscript𝒪𝑚subscript𝑐subscript𝒪𝑚𝑡superscriptsubscript𝒪𝑚𝑛𝑥𝑡\delta^{(n)}_{g,\text{loc}}(\vec{x},t)=\sum_{\mathcal{O}_{m}}c_{\mathcal{O}_{m% }}(t)\,\mathcal{O}_{m}^{(n)}(\vec{x},t)\ ,italic_δ start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g , loc end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (12)

we see that the difference is in the basis functions of the expansion (which as we will discuss below control the possible functional forms of the clustering signals), since Eq. (9) is equivalent to Eq. (12) under the restriction that, for all α𝛼\alphaitalic_α, c𝒪m,α(t)=c𝒪m(t)subscript𝑐subscript𝒪𝑚𝛼𝑡subscript𝑐subscript𝒪𝑚𝑡c_{\mathcal{O}_{m},\alpha}(t)=c_{\mathcal{O}_{m}}(t)italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) = italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ).

III Non-local-in-time bias in LSS

We can now return to the main question posed by this work: is it possible to directly measure the effects of non-locality in time on galaxy clustering? In our perturbative description, this is equivalent to the the following mathematical question: does the basis for the non-local-in-time expansion Eq. (9) span a larger space than the basis for the local-in-time expansion Eq. (12)? The answer, as we will show below, is yes.

As shown in D’Amico et al. (2022c), the non-local-in-time and local-in-time expansions are indeed equivalent up to fourth order in perturbations.555Focusing on up to fourth order, Mirbabayi et al. (2015); Desjacques et al. (2018) discussed how it is possible to map non-local-in-time terms into very special non-local-in-space terms. The bases discussed there are degenerate with a local-in-time and local-in-space one, though D’Amico et al. (2022c). However, from the findings of this work, this seems to simply be a consequence of expanding to low orders in perturbation theory where there are too few independent spatially local and Galilean invariant functional forms available, since non-locality-in-time is generically expected in the bias expansion Senatore (2015).

So, to discover a non-local-in-time effect, we look to fifth order. In particular, we will now find the non-local-in-time basis for the expansion in Eq. (9). To find the fifth-order functions 𝒪m,α(n)subscriptsuperscript𝑛subscript𝒪𝑚𝛼\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT, we form the set {𝒪m}subscript𝒪𝑚\{\mathcal{O}_{m}\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } by finding all rotationally invariant contractions of rijsubscript𝑟𝑖𝑗r_{ij}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and pijsubscript𝑝𝑖𝑗p_{ij}italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT up to fifth order. Writing the first few terms, we have {𝒪m}={δ,θ,δ2,δθ,θ2,r2,rp,p2,}subscript𝒪𝑚𝛿𝜃superscript𝛿2𝛿𝜃superscript𝜃2superscript𝑟2𝑟𝑝superscript𝑝2\{\mathcal{O}_{m}\}=\{\delta,\theta,\delta^{2},\delta\theta,\theta^{2},r^{2},% rp,p^{2},\dots\}{ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } = { italic_δ , italic_θ , italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_δ italic_θ , italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_r italic_p , italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , … }, and overall there are 63636363 contractions with up to five factors.666Here and in the rest of this work, since we work up to fifth order, we have already taken into account degeneracies that come from the fact that rij(1)=pij(1)superscriptsubscript𝑟𝑖𝑗1superscriptsubscript𝑝𝑖𝑗1r_{ij}^{(1)}=p_{ij}^{(1)}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT = italic_p start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT in terms that start at fifth order. If we do not do this, there are 130 contractions with up to five factors. We then find the functions 𝒪m,α(n)superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT for n5𝑛5n\leq 5italic_n ≤ 5 either by expanding xflsubscript𝑥fl\vec{x}_{\rm fl}over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT as in Eq. (LABEL:omordern), or, equivalently, using the recursion relations Eq. (10) and Eq. (11). After this, there are 151151151151 bias functions for n=5𝑛5n=5italic_n = 5. However, as described in App. B, not all of these functions are independent. In particular, we find a set of 122 degeneracy equations for n=5𝑛5n=5italic_n = 5, which means that there are 29292929 independent functions that form the basis of the non-local-in-time expansion Eq. (9).777Using the Lagrangian basis expansion, Schmidt (2021a, b) derived the number of independent fifth-order biases as 29, which is in agreement with our findings. We provide all of the Fourier-space kernels relevant for the fifth-order expansion, and confirm all degeneracy equations, in an associated auxiliary file.

Next, we consider the basis of bias functions for the local-in-time expression Eq. (12). At fifth order, this expansion starts with 63636363 terms, however, as before, not all of them are linearly independent. We find 37373737 independent degeneracy equations, and hence 26262626 independent functions for the local-in-time bias expansion at fifth order. Indeed, this is three less than the non-local-in-time expansion, and hence the galaxy-clustering signal at fifth order is sensitive to whether or not galaxies form on time scales of order Hubble.

We are now in a position to explicitly give the fifth-order basis derived for this work. To be more concrete, we can write the fifth-order galaxy expansion in a basis with 26 elements that are local in time, and three that are non-local in time. In this starting-from-time-locality (STL) basis, we explicitly write

δg(5)(x,t)=j=129b~j(t)𝕃j(5)(x,t).superscriptsubscript𝛿𝑔5𝑥𝑡superscriptsubscript𝑗129subscript~𝑏𝑗𝑡subscriptsuperscript𝕃5𝑗𝑥𝑡\delta_{g}^{(5)}(\vec{x},t)=\sum_{j=1}^{29}\tilde{b}_{j}(t)\mathbb{L}^{(5)}_{j% }(\vec{x},t)\ .italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) blackboard_L start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) . (13)

We choose the basis such that the elements with j=1,,26𝑗126j=1,\dots,26italic_j = 1 , … , 26 are a basis of the local expansion Eq. (12). Explicitly, we take 𝕃j(5)=𝒪m(5)superscriptsubscript𝕃𝑗5superscriptsubscript𝒪𝑚5\mathbb{L}_{j}^{(5)}=\mathcal{O}_{m}^{(5)}blackboard_L start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT with the corresponding 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT given by

{δ,θ,δθ,θ2,r2,rp,p2,θ3,r2p,rp2,p3,r2θ,rpθ,p2θ,rp3,rprp,rp2δ,r3δ2,δ5,r3θ,rp2θ,rpδθ,r2θ2,rpθ2,δθ3,θ4},𝛿𝜃𝛿𝜃superscript𝜃2superscript𝑟2𝑟𝑝superscript𝑝2superscript𝜃3superscript𝑟2𝑝𝑟superscript𝑝2superscript𝑝3superscript𝑟2𝜃𝑟𝑝𝜃superscript𝑝2𝜃𝑟superscript𝑝3𝑟𝑝𝑟𝑝𝑟superscript𝑝2𝛿superscript𝑟3superscript𝛿2superscript𝛿5superscript𝑟3𝜃𝑟superscript𝑝2𝜃𝑟𝑝𝛿𝜃superscript𝑟2superscript𝜃2𝑟𝑝superscript𝜃2𝛿superscript𝜃3superscript𝜃4\displaystyle\begin{split}&\{\delta,\theta,\delta\theta,\theta^{2},r^{2},rp,p^% {2},\theta^{3},r^{2}p,rp^{2},p^{3},\\ &\quad r^{2}\theta,rp\theta,p^{2}\theta,rp^{3},rprp,rp^{2}\delta,r^{3}\delta^{% 2},\\ &\quad\delta^{5},r^{3}\theta,rp^{2}\theta,rp\delta\theta,r^{2}\theta^{2},rp% \theta^{2},\delta\theta^{3},\theta^{4}\}\ ,\end{split}start_ROW start_CELL end_CELL start_CELL { italic_δ , italic_θ , italic_δ italic_θ , italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_r italic_p , italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_θ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p , italic_r italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_p start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ , italic_r italic_p italic_θ , italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ , italic_r italic_p start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_r italic_p italic_r italic_p , italic_r italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ , italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_δ start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT , italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_θ , italic_r italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ , italic_r italic_p italic_δ italic_θ , italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_r italic_p italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_δ italic_θ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_θ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT } , end_CELL end_ROW (14)

for j=1,,26𝑗126j=1,\dots,26italic_j = 1 , … , 26. Thus, the non-locality in time is contained in the final three basis elements, which we take to be

𝕃27(5)=δ,5(5),𝕃28(5)=r2,4(5),𝕃29(5)=p3,3(5).\displaystyle\begin{split}\mathbb{L}_{27}^{(5)}=\mathbb{C}_{\delta,5}^{(5)}\ ,% \quad\mathbb{L}_{28}^{(5)}=\mathbb{C}_{r^{2},4}^{(5)}\ ,\quad\mathbb{L}_{29}^{% (5)}=\mathbb{C}_{p^{3},3}^{(5)}\ .\end{split}start_ROW start_CELL blackboard_L start_POSTSUBSCRIPT 27 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = blackboard_C start_POSTSUBSCRIPT italic_δ , 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT , blackboard_L start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = blackboard_C start_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT , blackboard_L start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = blackboard_C start_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT . end_CELL end_ROW (15)

Non-zero b~27subscript~𝑏27\tilde{b}_{27}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 27 end_POSTSUBSCRIPT, b~28subscript~𝑏28\tilde{b}_{28}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT, and b~29subscript~𝑏29\tilde{b}_{29}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT can only come from non-local-in-time physics, so we call them non-local-in-time bias parameters.888Here we reference the size of the physical bias parameters, which are generally made up of a combination of bare and counterterm contributions. We connect this basis to the so-called basis of descendants and show how fourth- and lower-order biases automatically consistently appear in Eq. (13) in App. C.

To see more quantitatively how the non-local-in-time bias parameters measure the time scale of galaxy formation, consider the expression Eq. (8) for the bias parameters. Assuming that the kernel c𝒪m(t,t)subscript𝑐subscript𝒪𝑚𝑡superscript𝑡c_{\mathcal{O}_{m}}(t,t^{\prime})italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) has support over a time scale of order 1/ω1𝜔1/\omega1 / italic_ω and expanding around the local-in-time limit, we have

c𝒪m,α(t)c𝒪m(t)(1+g𝒪m,α(t)Hω+),subscript𝑐subscript𝒪𝑚𝛼𝑡subscript𝑐subscript𝒪𝑚𝑡1subscript𝑔subscript𝒪𝑚𝛼𝑡𝐻𝜔c_{\mathcal{O}_{m},\alpha}(t)\approx c_{\mathcal{O}_{m}}(t)\left(1+g_{\mathcal% {O}_{m},\alpha}(t){\frac{H}{\omega}}+\dots\right)\ ,italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) ≈ italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t ) ( 1 + italic_g start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) divide start_ARG italic_H end_ARG start_ARG italic_ω end_ARG + … ) , (16)

where the \dots represents terms higher order in H/ω𝐻𝜔H/\omegaitalic_H / italic_ω, and g𝒪m,α(t)𝒪(1)similar-tosubscript𝑔subscript𝒪𝑚𝛼𝑡𝒪1g_{\mathcal{O}_{m},\alpha}(t)\sim{\cal{O}}(1)italic_g start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) ∼ caligraphic_O ( 1 ). Since the non-local-in-time bias parameters b~27subscript~𝑏27\tilde{b}_{27}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 27 end_POSTSUBSCRIPT, b~28subscript~𝑏28\tilde{b}_{28}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT and b~29subscript~𝑏29\tilde{b}_{29}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT all vanish in the local-in-time limit, they are proportional to (at least) H/ω𝐻𝜔H/\omegaitalic_H / italic_ω. The size of the deviation from the first term, which is the local-in-time piece, is controlled by H/ω𝐻𝜔H/\omegaitalic_H / italic_ω: if there is a sizable deviation from the local-in-time limit, then ωHsimilar-to𝜔𝐻\omega\sim Hitalic_ω ∼ italic_H, and thus the time scale of the kernel c𝒪m(t,t)subscript𝑐subscript𝒪𝑚𝑡superscript𝑡c_{\mathcal{O}_{m}}(t,t^{\prime})italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is of the order 1/H1𝐻1/H1 / italic_H.999Of course, the measurement of a smaller deviation from the local-in-time limit means that the formation time scale could be correspondingly smaller. It could also mean that the theory is fine tuned in the sense that higher-order loop contributions accidentally largely cancel the lower-order biases. On the other hand, it could also be that for a quasi-local-in-time theory, the coefficients of some non-local-in-time operators are accidentally large, which we refer to as being anomalous. These accidents become more and more unlikely as one measures more parameters. In our case, this happens if b~27subscript~𝑏27\tilde{b}_{27}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 27 end_POSTSUBSCRIPT, b~28subscript~𝑏28\tilde{b}_{28}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT, or b~29subscript~𝑏29\tilde{b}_{29}over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT are order unity. This in turn would mean that the formation of the observed population of galaxies has been affected by the state of the Universe up to a Hubble time ago, and thus that it has formed on a time scale on the order of the age of the Universe.

It can be illuminating to momentarily consider a system that is truly local in time. In this case, as we have discussed above, the bias parameters are expected to scale like H/ωshort1much-less-than𝐻subscript𝜔short1H/\omega_{\rm short}\ll 1italic_H / italic_ω start_POSTSUBSCRIPT roman_short end_POSTSUBSCRIPT ≪ 1. However, in the EFT, higher-order loops will generically contribute to the lower-order bias parameters. Importantly, for a system that is truly local in time, those loops are expected to shift the bias parameters also by an amount that scales like H/ωshort𝐻subscript𝜔shortH/\omega_{\rm short}italic_H / italic_ω start_POSTSUBSCRIPT roman_short end_POSTSUBSCRIPT. Given, though, that the cold dark-matter fluid is itself non-local in time Carrasco et al. (2014); Carroll et al. (2014), we expect that higher-order dark-matter loops will generically contribute 𝒪(1)similar-toabsent𝒪1\sim\mathcal{O}(1)∼ caligraphic_O ( 1 ) to the galaxy bias parameters. We remind the reader that by galaxies in this work, we mean gravitationally-bound structures that form around the non-linear scale at a given Hubble time.

IV Observable signatures

Until now, we have focused on the perturbative galaxy overdensity field itself. In large-scale structure analyses, we typically compare to data using correlation functions (or n𝑛nitalic_n-point functions if they contain n𝑛nitalic_n fields) of the overdensity fields of various tracers. Thus, one way to measure the non-local-in-time effect that we have discovered in this work is in correlation functions. Since we found that this effect arises at fifth order in perturbations, the lowest order observables sensitive to it are the two-loop two-point function through

δg1(5)(x1)δg2(1)(x2),delimited-⟨⟩superscriptsubscript𝛿subscript𝑔15subscript𝑥1superscriptsubscript𝛿subscript𝑔21subscript𝑥2\langle\delta_{g_{1}}^{(5)}(\vec{x}_{1})\delta_{g_{2}}^{(1)}(\vec{x}_{2})% \rangle\ ,⟨ italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩ , (17)

the two-loop three-point function through

δg1(5)(x1)δg2(2)(x2)δg3(1)(x3),delimited-⟨⟩superscriptsubscript𝛿subscript𝑔15subscript𝑥1superscriptsubscript𝛿subscript𝑔22subscript𝑥2superscriptsubscript𝛿subscript𝑔31subscript𝑥3\langle\delta_{g_{1}}^{(5)}(\vec{x}_{1})\delta_{g_{2}}^{(2)}(\vec{x}_{2})% \delta_{g_{3}}^{(1)}(\vec{x}_{3})\rangle\ ,⟨ italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ⟩ , (18)

the one-loop four-point function through

δg1(5)(x1)δg2(1)(x2)δg3(1)(x3)δg4(1)(x4),delimited-⟨⟩superscriptsubscript𝛿subscript𝑔15subscript𝑥1superscriptsubscript𝛿subscript𝑔21subscript𝑥2superscriptsubscript𝛿subscript𝑔31subscript𝑥3superscriptsubscript𝛿subscript𝑔41subscript𝑥4\langle\delta_{g_{1}}^{(5)}(\vec{x}_{1})\delta_{g_{2}}^{(1)}(\vec{x}_{2})% \delta_{g_{3}}^{(1)}(\vec{x}_{3})\delta_{g_{4}}^{(1)}(\vec{x}_{4})\rangle\ ,⟨ italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) ⟩ , (19)

the one-loop five-point function through

δg1(5)(x1)δg2(2)(x2)δg3(1)(x3)δg4(1)(x4)δg5(1)(x5),delimited-⟨⟩superscriptsubscript𝛿subscript𝑔15subscript𝑥1superscriptsubscript𝛿subscript𝑔22subscript𝑥2superscriptsubscript𝛿subscript𝑔31subscript𝑥3superscriptsubscript𝛿subscript𝑔41subscript𝑥4superscriptsubscript𝛿subscript𝑔51subscript𝑥5\langle\delta_{g_{1}}^{(5)}(\vec{x}_{1})\delta_{g_{2}}^{(2)}(\vec{x}_{2})% \delta_{g_{3}}^{(1)}(\vec{x}_{3})\delta_{g_{4}}^{(1)}(\vec{x}_{4})\delta_{g_{5% }}^{(1)}(\vec{x}_{5})\rangle\ ,⟨ italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) ⟩ , (20)

and the tree-level six-point function through

δg1(5)(x1)δg2(1)(x2)δg3(1)(x3)δg4(1)(x4)δg5(1)(x5)δg6(1)(x6),delimited-⟨⟩superscriptsubscript𝛿subscript𝑔15subscript𝑥1superscriptsubscript𝛿subscript𝑔21subscript𝑥2superscriptsubscript𝛿subscript𝑔31subscript𝑥3superscriptsubscript𝛿subscript𝑔41subscript𝑥4superscriptsubscript𝛿subscript𝑔51subscript𝑥5superscriptsubscript𝛿subscript𝑔61subscript𝑥6\langle\delta_{g_{1}}^{(5)}(\vec{x}_{1})\delta_{g_{2}}^{(1)}(\vec{x}_{2})% \delta_{g_{3}}^{(1)}(\vec{x}_{3})\delta_{g_{4}}^{(1)}(\vec{x}_{4})\delta_{g_{5% }}^{(1)}(\vec{x}_{5})\delta_{g_{6}}^{(1)}(\vec{x}_{6})\rangle\ ,⟨ italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) ⟩ , (21)

where we have used the subscript gisubscript𝑔𝑖g_{i}italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to denote possibly different tracer samples (each of which can have a different set of bias parameters), and we have taken all fields to be at the same time t𝑡titalic_t and dropped that argument to remove clutter.

As two explicit examples, consider the contributions to the two-loop two-point function Eq. (17) and the tree-level six-point function Eq. (20) for gi=gsubscript𝑔𝑖𝑔g_{i}=gitalic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_g for i=1,,6𝑖16i=1,\dots,6italic_i = 1 , … , 6. Using the STL basis Eq. (13), we have the explicit non-local-in-time contributions

j=2729b~j𝕃j(5)(x1)δg(1)(x2),superscriptsubscript𝑗2729subscript~𝑏𝑗delimited-⟨⟩superscriptsubscript𝕃𝑗5subscript𝑥1subscriptsuperscript𝛿1𝑔subscript𝑥2\displaystyle\sum_{j=27}^{29}\tilde{b}_{j}\langle\mathbb{L}_{j}^{(5)}(\vec{x}_% {1})\delta^{(1)}_{g}(\vec{x}_{2})\rangle\ ,∑ start_POSTSUBSCRIPT italic_j = 27 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ⟨ blackboard_L start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩ , (22)
j=2729b~j𝕃j(5)(x1)δg(1)(x2)δg(1)(x3)δg(1)(x4)δg(1)(x5)δg(1)(x6),superscriptsubscript𝑗2729subscript~𝑏𝑗delimited-⟨⟩superscriptsubscript𝕃𝑗5subscript𝑥1superscriptsubscript𝛿𝑔1subscript𝑥2superscriptsubscript𝛿𝑔1subscript𝑥3superscriptsubscript𝛿𝑔1subscript𝑥4superscriptsubscript𝛿𝑔1subscript𝑥5superscriptsubscript𝛿𝑔1subscript𝑥6\displaystyle\sum_{j=27}^{29}\tilde{b}_{j}\langle\mathbb{L}_{j}^{(5)}(\vec{x}_% {1})\delta_{g}^{(1)}(\vec{x}_{2})\delta_{g}^{(1)}(\vec{x}_{3})\delta_{g}^{(1)}% (\vec{x}_{4})\delta_{g}^{(1)}(\vec{x}_{5})\delta_{g}^{(1)}(\vec{x}_{6})\rangle\ ,∑ start_POSTSUBSCRIPT italic_j = 27 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ⟨ blackboard_L start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) ⟩ ,

to the two-point and six-point functions respectively. As we have seen, these would not be present in the galaxy correlation functions if galaxies formed in a local-in-time way. This makes them concrete, direct, observable signatures of the formation time of galaxies.

Acknowledgements.
We thank T. Abel and E. Komatsu for insightful comments on this manuscript. Y.D. acknowledges support from the STFC. L.S. is supported by the SNSF grant 200021_213120200021_213120200021\_213120200021 _ 213120.

Appendix A Proof of fluid recursion

To derive Eq. (11), we will want to take d/dt𝑑𝑑𝑡d/dtitalic_d / italic_d italic_t of Eq. (LABEL:omordern), which means that we will need to know txfl(x,t,t)subscript𝑡subscript𝑥fl𝑥𝑡superscript𝑡\partial_{t}\vec{x}_{\rm fl}(\vec{x},t,t^{\prime})∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ). To find that, we notice that by definition the fluid element satisfies the composition rule

xfl(xfl(x,tin,t),t,t)=xfl(x,tin,t).subscript𝑥flsubscript𝑥fl𝑥subscript𝑡in𝑡𝑡superscript𝑡subscript𝑥fl𝑥subscript𝑡insuperscript𝑡\vec{x}_{\rm fl}\left(\vec{x}_{\rm fl}(\vec{x},t_{\rm in},t),t,t^{\prime}% \right)=\vec{x}_{\rm fl}(\vec{x},t_{\rm in},t^{\prime})\ .over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t ) , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . (23)

Since the right-hand side is independent of t𝑡titalic_t, this implies

ddtxfl(xfl(x,tin,t),t,t)=0.𝑑𝑑𝑡subscript𝑥flsubscript𝑥fl𝑥subscript𝑡in𝑡𝑡superscript𝑡0\frac{d}{dt}\vec{x}_{\rm fl}\left(\vec{x}_{\rm fl}(\vec{x},t_{\rm in},t),t,t^{% \prime}\right)=0\ .divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t ) , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0 . (24)

Using the chain rule, and

ddtxfl(x,tin,t)=1a(t)v(xfl(x,tin,t),t),𝑑𝑑𝑡subscript𝑥fl𝑥subscript𝑡in𝑡1𝑎𝑡𝑣subscript𝑥fl𝑥subscript𝑡in𝑡𝑡\frac{d}{dt}\vec{x}_{\rm fl}(\vec{x},t_{\rm in},t)=\frac{1}{a(t)}\vec{v}(\vec{% x}_{\rm fl}(\vec{x},t_{\rm in},t),t)\ ,divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t ) = divide start_ARG 1 end_ARG start_ARG italic_a ( italic_t ) end_ARG over→ start_ARG italic_v end_ARG ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t ) , italic_t ) , (25)

which follows immediately from the definition of xflsubscript𝑥fl\vec{x}_{\rm fl}over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT Eq. (5), this implies

0=[txfl(y,t,t)+vi(y,t)a(t)yixfl(y,t,t)]|y=xfl(x,tin,t).0evaluated-atdelimited-[]𝑡subscript𝑥fl𝑦𝑡superscript𝑡superscript𝑣𝑖𝑦𝑡𝑎𝑡superscript𝑦𝑖subscript𝑥fl𝑦𝑡superscript𝑡𝑦subscript𝑥fl𝑥subscript𝑡in𝑡\displaystyle\begin{split}0&=\Big{[}\frac{\partial}{\partial t}\vec{x}_{\rm fl% }(\vec{y},t,t^{\prime})+\\ &\hskip 28.90755pt\frac{v^{i}(\vec{y},t)}{a(t)}\frac{\partial}{\partial y^{i}}% \vec{x}_{\rm fl}(\vec{y},t,t^{\prime})\Big{]}\Big{|}_{\vec{y}=\vec{x}_{\rm fl}% (\vec{x},t_{\rm in},t)}\ .\end{split}start_ROW start_CELL 0 end_CELL start_CELL = [ divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_y end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL divide start_ARG italic_v start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( over→ start_ARG italic_y end_ARG , italic_t ) end_ARG start_ARG italic_a ( italic_t ) end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_y start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_y end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] | start_POSTSUBSCRIPT over→ start_ARG italic_y end_ARG = over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_t ) end_POSTSUBSCRIPT . end_CELL end_ROW (26)

Since the initial tinsubscript𝑡int_{\rm in}italic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is arbitrary, we can take tin=tsubscript𝑡in𝑡t_{\rm in}=titalic_t start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = italic_t, which gives

(t+vi(x,t)a(t)xi)xfl(x,t,t)=0.𝑡superscript𝑣𝑖𝑥𝑡𝑎𝑡superscript𝑥𝑖subscript𝑥fl𝑥𝑡superscript𝑡0\left(\frac{\partial}{\partial t}+\frac{v^{i}(\vec{x},t)}{a(t)}\frac{\partial}% {\partial x^{i}}\right)\vec{x}_{\rm fl}(\vec{x},t,t^{\prime})=0\ .( divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG italic_v start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_ARG start_ARG italic_a ( italic_t ) end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG ) over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0 . (27)

This equation simply says that the convective derivative of the fluid element is zero, which makes intuitive sense since the convective derivative is defined to be along the fluid flow.

Now we take d/dt𝑑𝑑𝑡d/dtitalic_d / italic_d italic_t of both sides of Eq. (LABEL:omordern). The right-hand side is simple, and we have (defining Dmα(t,t)(D(t)/D(t))α+m1subscriptsuperscript𝐷𝛼𝑚superscript𝑡𝑡superscript𝐷superscript𝑡𝐷𝑡𝛼𝑚1{D^{\alpha}_{m}(t^{\prime},t)}\equiv(D(t^{\prime})/D(t))^{\alpha+m-1}italic_D start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t ) ≡ ( italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) / italic_D ( italic_t ) ) start_POSTSUPERSCRIPT italic_α + italic_m - 1 end_POSTSUPERSCRIPT to reduce clutter)

D(t)D˙(t)ddtα=1nm+1Dmα(t,t)𝒪m,α(n)(x,t)=𝐷𝑡˙𝐷𝑡𝑑𝑑𝑡superscriptsubscript𝛼1𝑛𝑚1subscriptsuperscript𝐷𝛼𝑚superscript𝑡𝑡superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡absent\displaystyle\frac{D(t)}{\dot{D}(t)}\frac{d}{dt}\sum_{\alpha=1}^{n-m+1}D^{% \alpha}_{m}(t^{\prime},t)\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)=divide start_ARG italic_D ( italic_t ) end_ARG start_ARG over˙ start_ARG italic_D end_ARG ( italic_t ) end_ARG divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t ) blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = (28)
α=1nm+1Dmα(t,t)(nαm+1)𝒪m,α(n)(x,t),superscriptsubscript𝛼1𝑛𝑚1subscriptsuperscript𝐷𝛼𝑚superscript𝑡𝑡𝑛𝛼𝑚1superscriptsubscriptsubscript𝒪𝑚𝛼𝑛𝑥𝑡\displaystyle\hskip 14.45377pt\sum_{\alpha=1}^{n-m+1}D^{\alpha}_{m}(t^{\prime}% ,t)(n-\alpha-m+1)\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)\ ,∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t ) ( italic_n - italic_α - italic_m + 1 ) blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) ,

where we have used Eq. (7) for the time dependence of 𝒪m,α(n)superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT.

On the left-hand side, we have

ddt[𝒪m(xfl(x,t,t),t)](n)=[ddt𝒪m(xfl(x,t,t),t)](n)𝑑𝑑𝑡superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛superscriptdelimited-[]𝑑𝑑𝑡subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛\displaystyle\frac{d}{dt}[\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime% }),t^{\prime})]^{(n)}=\left[\frac{d}{dt}\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{% x},t,t^{\prime}),t^{\prime})\right]^{(n)}divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG [ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT = [ divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT
=[txfli(x,t,t)yi𝒪m(y,t)|y=xfl(x,t,t)](n)absentsuperscriptdelimited-[]evaluated-at𝑡superscriptsubscript𝑥fl𝑖𝑥𝑡superscript𝑡superscript𝑦𝑖subscript𝒪𝑚𝑦superscript𝑡𝑦subscript𝑥fl𝑥𝑡superscript𝑡𝑛\displaystyle=\left[\frac{\partial}{\partial t}x_{\rm fl}^{i}(\vec{x},t,t^{% \prime})\frac{\partial}{\partial y^{i}}\mathcal{O}_{m}(\vec{y},t^{\prime})\Big% {|}_{\vec{y}=\vec{x}_{\rm fl}(\vec{x},t,t^{\prime})}\right]^{(n)}= [ divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG italic_x start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) divide start_ARG ∂ end_ARG start_ARG ∂ italic_y start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_y end_ARG , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) | start_POSTSUBSCRIPT over→ start_ARG italic_y end_ARG = over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT
=[vj(x,t)a(t)xjxfli(x,t,t)yi𝒪m(y,t)|y=xfl(x,t,t)](n)absentsuperscriptdelimited-[]evaluated-atsuperscript𝑣𝑗𝑥𝑡𝑎𝑡superscript𝑥𝑗superscriptsubscript𝑥fl𝑖𝑥𝑡superscript𝑡superscript𝑦𝑖subscript𝒪𝑚𝑦superscript𝑡𝑦subscript𝑥fl𝑥𝑡superscript𝑡𝑛\displaystyle=\left[-\frac{v^{j}(\vec{x},t)}{a(t)}\frac{\partial}{\partial x^{% j}}x_{\rm fl}^{i}(\vec{x},t,t^{\prime})\frac{\partial}{\partial y^{i}}\mathcal% {O}_{m}(\vec{y},t^{\prime})\Big{|}_{\vec{y}=\vec{x}_{\rm fl}(\vec{x},t,t^{% \prime})}\right]^{(n)}= [ - divide start_ARG italic_v start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_ARG start_ARG italic_a ( italic_t ) end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_ARG italic_x start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) divide start_ARG ∂ end_ARG start_ARG ∂ italic_y start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_y end_ARG , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) | start_POSTSUBSCRIPT over→ start_ARG italic_y end_ARG = over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT
=[vj(x,t)a(t)xi𝒪m(xfl(x,t,t),t)](n)absentsuperscriptdelimited-[]superscript𝑣𝑗𝑥𝑡𝑎𝑡superscript𝑥𝑖subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛\displaystyle=\left[-\frac{v^{j}(\vec{x},t)}{a(t)}\frac{\partial}{\partial x^{% i}}\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime}),t^{\prime})\right]^{% (n)}= [ - divide start_ARG italic_v start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) end_ARG start_ARG italic_a ( italic_t ) end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT (29)
=D˙(t)D(t)[i2θ(x,t)xi𝒪m(xfl(x,t,t),t)](n)absent˙𝐷𝑡𝐷𝑡superscriptdelimited-[]subscript𝑖superscript2𝜃𝑥𝑡superscript𝑥𝑖subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛\displaystyle=\frac{\dot{D}(t)}{D(t)}\left[\frac{\partial_{i}}{\partial^{2}}% \theta(\vec{x},t)\frac{\partial}{\partial x^{i}}\mathcal{O}_{m}(\vec{x}_{\rm fl% }(\vec{x},t,t^{\prime}),t^{\prime})\right]^{(n)}= divide start_ARG over˙ start_ARG italic_D end_ARG ( italic_t ) end_ARG start_ARG italic_D ( italic_t ) end_ARG [ divide start_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_θ ( over→ start_ARG italic_x end_ARG , italic_t ) divide start_ARG ∂ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT
=D˙(t)D(t)=mn1i2θ(n)(x,t)xi[𝒪m(xfl(x,t,t),t)](),absent˙𝐷𝑡𝐷𝑡superscriptsubscript𝑚𝑛1subscript𝑖superscript2superscript𝜃𝑛𝑥𝑡superscript𝑥𝑖superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡\displaystyle=\frac{\dot{D}(t)}{D(t)}\sum_{\ell=m}^{n-1}\frac{\partial_{i}}{% \partial^{2}}\theta^{(n-\ell)}(\vec{x},t)\frac{\partial}{\partial x^{i}}\left[% \mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime}),t^{\prime})\right]^{(% \ell)}\ ,= divide start_ARG over˙ start_ARG italic_D end_ARG ( italic_t ) end_ARG start_ARG italic_D ( italic_t ) end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_θ start_POSTSUPERSCRIPT ( italic_n - roman_ℓ ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) divide start_ARG ∂ end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG [ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ,

where we have used Eq. (27) to go from the second to third line, the chain rule to go from the third to fourth line, and the definition of θ𝜃\thetaitalic_θ from Eq. (1) in the fifth line. Now, we use Eq. (LABEL:omordern) to replace [𝒪m(xfl(x,t,t),t)]()superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡\left[\mathcal{O}_{m}(\vec{x}_{\rm fl}(\vec{x},t,t^{\prime}),t^{\prime})\right% ]^{(\ell)}[ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT to get

D(t)D˙(t)ddt[𝒪m(xfl(x,t,t),t)](n)𝐷𝑡˙𝐷𝑡𝑑𝑑𝑡superscriptdelimited-[]subscript𝒪𝑚subscript𝑥fl𝑥𝑡superscript𝑡superscript𝑡𝑛\displaystyle\frac{D(t)}{\dot{D}(t)}\frac{d}{dt}[\mathcal{O}_{m}(\vec{x}_{\rm fl% }(\vec{x},t,t^{\prime}),t^{\prime})]^{(n)}divide start_ARG italic_D ( italic_t ) end_ARG start_ARG over˙ start_ARG italic_D end_ARG ( italic_t ) end_ARG divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG [ caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG start_POSTSUBSCRIPT roman_fl end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT (30)
==mn1α=1m+1Dmα(t,t)i2θ(n)(x,t)i𝒪m,α()(x,t)absentsuperscriptsubscript𝑚𝑛1superscriptsubscript𝛼1𝑚1subscriptsuperscript𝐷𝛼𝑚superscript𝑡𝑡subscript𝑖superscript2superscript𝜃𝑛𝑥𝑡subscript𝑖subscriptsuperscriptsubscript𝒪𝑚𝛼𝑥𝑡\displaystyle=\sum_{\ell=m}^{n-1}\sum_{\alpha=1}^{\ell-m+1}D^{\alpha}_{m}(t^{% \prime},t)\frac{\partial_{i}}{\partial^{2}}\theta^{(n-\ell)}(\vec{x},t)% \partial_{i}\mathbb{C}^{(\ell)}_{\mathcal{O}_{m},\alpha}(\vec{x},t)= ∑ start_POSTSUBSCRIPT roman_ℓ = italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ - italic_m + 1 end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t ) divide start_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_θ start_POSTSUPERSCRIPT ( italic_n - roman_ℓ ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t )
=α=1nmDmα(t,t)=m+α1n1i2θ(n)(x,t)i𝒪m,α()(x,t)absentsuperscriptsubscript𝛼1𝑛𝑚subscriptsuperscript𝐷𝛼𝑚superscript𝑡𝑡superscriptsubscript𝑚𝛼1𝑛1subscript𝑖superscript2superscript𝜃𝑛𝑥𝑡subscript𝑖subscriptsuperscriptsubscript𝒪𝑚𝛼𝑥𝑡\displaystyle=\sum_{\alpha=1}^{n-m}D^{\alpha}_{m}(t^{\prime},t)\sum_{\ell=m+% \alpha-1}^{n-1}\frac{\partial_{i}}{\partial^{2}}\theta^{(n-\ell)}(\vec{x},t)% \partial_{i}\mathbb{C}^{(\ell)}_{\mathcal{O}_{m},\alpha}(\vec{x},t)= ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t ) ∑ start_POSTSUBSCRIPT roman_ℓ = italic_m + italic_α - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_θ start_POSTSUPERSCRIPT ( italic_n - roman_ℓ ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t )

where we have simply changed the order of the sums between the second and third lines. Equating the coefficients of each power of D(t)𝐷superscript𝑡D(t^{\prime})italic_D ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) in Eq. (28) and Eq. (30) then gives our recursion relation Eq. (11).

Appendix B Degeneracy equations

As mentioned in the main text, not all of the bias functions 𝒪m,α(n)subscriptsuperscript𝑛subscript𝒪𝑚𝛼\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT at a given n𝑛nitalic_n are linearly independent in the sense that

𝒪mα=1nm+1di,𝒪m,α(n)𝒪m,α(n)(x,t)=0,subscriptsubscript𝒪𝑚superscriptsubscript𝛼1𝑛𝑚1subscriptsuperscript𝑑𝑛𝑖subscript𝒪𝑚𝛼subscriptsuperscript𝑛subscript𝒪𝑚𝛼𝑥𝑡0\sum_{\mathcal{O}_{m}}\sum_{\alpha=1}^{n-m+1}d^{(n)}_{i,\mathcal{O}_{m},\alpha% }\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}(\vec{x},t)=0\ ,∑ start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = 0 , (31)

for some time-independent coefficients di,𝒪m,α(n)subscriptsuperscript𝑑𝑛𝑖subscript𝒪𝑚𝛼d^{(n)}_{i,\mathcal{O}_{m},\alpha}italic_d start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT for i=1,,Nd(n)𝑖1superscriptsubscript𝑁𝑑𝑛i=1,\dots,N_{d}^{(n)}italic_i = 1 , … , italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT, where Nd(n)rank[d(n)]superscriptsubscript𝑁𝑑𝑛rankdelimited-[]superscript𝑑𝑛N_{d}^{(n)}\equiv\text{rank}[d^{(n)}]italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ≡ rank [ italic_d start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ] is the number of independent degeneracy equations. In particular, we find Nd(5)=122superscriptsubscript𝑁𝑑5122N_{d}^{(5)}=122italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = 122, and D’Amico et al. (2022c) found Nd(4)=73superscriptsubscript𝑁𝑑473N_{d}^{(4)}=73italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT = 73. Additionally, letting N(n)superscriptsubscript𝑁𝑛N_{\mathbb{C}}^{(n)}italic_N start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT be the number of 𝒪m,α(n)subscriptsuperscript𝑛subscript𝒪𝑚𝛼\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT functions that result after the procedure described in the main article, we find N(5)=151superscriptsubscript𝑁5151N_{\mathbb{C}}^{(5)}=151italic_N start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = 151 and D’Amico et al. (2022c) found N(4)=88superscriptsubscript𝑁488N_{\mathbb{C}}^{(4)}=88italic_N start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT = 88. Finally, using Nb(n)N(n)Nd(n)superscriptsubscript𝑁𝑏𝑛superscriptsubscript𝑁𝑛superscriptsubscript𝑁𝑑𝑛N_{b}^{(n)}\equiv N_{\mathbb{C}}^{(n)}-N_{d}^{(n)}italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ≡ italic_N start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT - italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT to denote the number of basis elements at order n𝑛nitalic_n, this means that Nb(5)=29superscriptsubscript𝑁𝑏529N_{b}^{(5)}=29italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = 29 and Nb(4)=15superscriptsubscript𝑁𝑏415N_{b}^{(4)}=15italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT = 15.101010For completeness, we also have Nb(3)=7superscriptsubscript𝑁𝑏37N_{b}^{(3)}=7italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT = 7, Nb(2)=3superscriptsubscript𝑁𝑏23N_{b}^{(2)}=3italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT = 3, and Nb(1)=1superscriptsubscript𝑁𝑏11N_{b}^{(1)}=1italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT = 1 with this method Angulo et al. (2015). We confirm all of the fifth-order degeneracy equations in the associated ancillary file.

Thus, one can solve the degeneracy equations Eq. (31) in terms of Nb(n)superscriptsubscript𝑁𝑏𝑛N_{b}^{(n)}italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT basis elements, which we denote generically as 𝔼j(n)(x,t)subscriptsuperscript𝔼𝑛𝑗𝑥𝑡\mathbb{E}^{(n)}_{j}(\vec{x},t)blackboard_E start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) for j=1,,Nb(n)𝑗1superscriptsubscript𝑁𝑏𝑛j=1,\dots,N_{b}^{(n)}italic_j = 1 , … , italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT. Since this is a basis, all of the original functions can be written in terms of it, so we have

𝒪m,α(n)(x,t)=j=1Nb(n)A𝒪m,α,j(n)𝔼j(n)(x,t),subscriptsuperscript𝑛subscript𝒪𝑚𝛼𝑥𝑡superscriptsubscript𝑗1superscriptsubscript𝑁𝑏𝑛subscriptsuperscript𝐴𝑛subscript𝒪𝑚𝛼𝑗subscriptsuperscript𝔼𝑛𝑗𝑥𝑡\mathbb{C}^{(n)}_{\mathcal{O}_{m},\alpha}(\vec{x},t)=\sum_{j=1}^{N_{b}^{(n)}}A% ^{(n)}_{\mathcal{O}_{m},\alpha,j}\,\mathbb{E}^{(n)}_{j}(\vec{x},t)\ ,blackboard_C start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α , italic_j end_POSTSUBSCRIPT blackboard_E start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (32)

for some time-independent coefficients A𝒪m,α,j(n)subscriptsuperscript𝐴𝑛subscript𝒪𝑚𝛼𝑗A^{(n)}_{\mathcal{O}_{m},\alpha,j}italic_A start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α , italic_j end_POSTSUBSCRIPT. Plugging Eq. (32) into Eq. (9) then gives

δg(n)(x,t)=j=1Nb(n)ej(n)(t)𝔼j(n)(x,t),superscriptsubscript𝛿𝑔𝑛𝑥𝑡superscriptsubscript𝑗1superscriptsubscript𝑁𝑏𝑛subscriptsuperscript𝑒𝑛𝑗𝑡subscriptsuperscript𝔼𝑛𝑗𝑥𝑡\delta_{g}^{(n)}(\vec{x},t)=\sum_{j=1}^{N_{b}^{(n)}}e^{(n)}_{j}(t)\mathbb{E}^{% (n)}_{j}(\vec{x},t)\ ,italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) blackboard_E start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (33)

where ej(n)(t)=𝒪mα=1nm+1c𝒪m,α(t)A𝒪m,α,j(n)subscriptsuperscript𝑒𝑛𝑗𝑡subscriptsubscript𝒪𝑚superscriptsubscript𝛼1𝑛𝑚1subscript𝑐subscript𝒪𝑚𝛼𝑡subscriptsuperscript𝐴𝑛subscript𝒪𝑚𝛼𝑗e^{(n)}_{j}(t)=\sum_{\mathcal{O}_{m}}\sum_{\alpha=1}^{n-m+1}c_{\mathcal{O}_{m}% ,\alpha}(t)A^{(n)}_{\mathcal{O}_{m},\alpha,j}italic_e start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) = ∑ start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - italic_m + 1 end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT ( italic_t ) italic_A start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α , italic_j end_POSTSUBSCRIPT. The coefficients ej(t)subscript𝑒𝑗𝑡e_{j}(t)italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) are called bias parameters, and we have now written the galaxy overdensity in terms of the minimal number of linearly independent functions.

Appendix C Basis of descendants

Another, perhaps more natural, choice of basis functions is the so-called basis of descendants Angulo et al. (2015), where if 𝒪m,α(n)superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT is used at order n𝑛nitalic_n, then 𝒪m,α+1(n+1)superscriptsubscriptsubscript𝒪𝑚𝛼1𝑛1\mathbb{C}_{\mathcal{O}_{m},\alpha+1}^{(n+1)}blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n + 1 ) end_POSTSUPERSCRIPT is used at order n+1𝑛1n+1italic_n + 1. We write the fifth-order expansion in the basis of descendants as

δg(5)(x,t)=j=129bj(t)𝔹j(5)(x,t).superscriptsubscript𝛿𝑔5𝑥𝑡superscriptsubscript𝑗129subscript𝑏𝑗𝑡subscriptsuperscript𝔹5𝑗𝑥𝑡\delta_{g}^{(5)}(\vec{x},t)=\sum_{j=1}^{29}b_{j}(t)\mathbb{B}^{(5)}_{j}(\vec{x% },t)\ .italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 29 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) blackboard_B start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) . (34)

As shown below, the first 15151515 terms in Eq. (34) are determined by the fourth-order terms. That is, for j=1,,15𝑗115j=1,\dots,15italic_j = 1 , … , 15, the bjsubscript𝑏𝑗b_{j}italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT in Eq. (34) are the same as those in D’Amico et al. (2022c), and the basis functions are given by

𝔹j(5)=𝔹j(4)|𝒪m,α(4)𝒪m,α(5)superscriptsubscript𝔹𝑗5evaluated-atsuperscriptsubscript𝔹𝑗4superscriptsubscriptsubscript𝒪𝑚𝛼4superscriptsubscriptsubscript𝒪𝑚𝛼5\mathbb{B}_{j}^{(5)}=\mathbb{B}_{j}^{(4)}\Big{|}_{\mathbb{C}_{\mathcal{O}_{m},% \alpha}^{(4)}\rightarrow\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(5)}}blackboard_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = blackboard_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT → blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT (35)

where the 𝔹j(4)superscriptsubscript𝔹𝑗4\mathbb{B}_{j}^{(4)}blackboard_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT are given explicitly in D’Amico et al. (2022c). For the new elements derived here, i.e. j=16,,29𝑗1629j=16,\dots,29italic_j = 16 , … , 29, we have 𝔹j(5)=𝒪m,α(5)superscriptsubscript𝔹𝑗5superscriptsubscriptsubscript𝒪𝑚𝛼5\mathbb{B}_{j}^{(5)}=\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(5)}blackboard_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT = blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT, where the indices 𝒪m,αsubscript𝒪𝑚𝛼\mathcal{O}_{m},\alphacaligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α take the following values for the given j𝑗jitalic_j

𝒪m,α:δ,5δ2,4r2,4δ3,3r3,3r2δ,3δ4,2j:23242526272829𝒪m,α:r3δ,2r4,2δ5,1r5,1r4δ,1r3δ2,1p3,3.fragments fragmentsO𝑚,α:fragmentsδ,5fragmentsδ2,4fragmentsr2,4fragmentsδ3,3fragmentsr3,3fragmentsr2δ,3fragmentsδ4,2fragmentsj:23242526272829fragmentsO𝑚,α:fragmentsr3δ,2fragmentsr4,2fragmentsδ5,1fragmentsr5,1fragmentsr4δ,1fragmentsr3δ2,1fragmentsp3,3\normalsize\begin{tabular}[]{|c|c|c|c|c|c|c|c|}\hline\cr$j:$&16&17&18&19&20&21% &22\\ \hline\cr$\mathcal{O}_{m},\alpha:$&$\delta,5$&$\delta^{2},4$&$r^{2},4$&$\delta% ^{3},3$&$r^{3},3$&$r^{2}\delta,3$&$\delta^{4},2$\\ \hline\cr\hline\cr\hline\cr$j:$&23&24&25&26&27&28&29\\ \hline\cr$\mathcal{O}_{m},\alpha:$&$r^{3}\delta,2$&$r^{4},2$&$\delta^{5},1$&$r% ^{5},1$&$r^{4}\delta,1$&$r^{3}\delta^{2},1$&$p^{3},3$\\ \hline\cr\end{tabular}\ .start_ROW start_CELL italic_j : end_CELL end_ROW start_ROW start_CELL caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α : end_CELL start_CELL italic_δ , 5 end_CELL start_CELL italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 4 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 4 end_CELL start_CELL italic_δ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 3 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 3 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ , 3 end_CELL start_CELL italic_δ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , 2 end_CELL end_ROW start_ROW start_CELL italic_j : end_CELL start_CELL 23 end_CELL start_CELL 24 end_CELL start_CELL 25 end_CELL start_CELL 26 end_CELL start_CELL 27 end_CELL start_CELL 28 end_CELL start_CELL 29 end_CELL end_ROW start_ROW start_CELL caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α : end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ , 2 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , 2 end_CELL start_CELL italic_δ start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT , 1 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT , 1 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_δ , 1 end_CELL start_CELL italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 1 end_CELL start_CELL italic_p start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 3 end_CELL end_ROW .
:j16171819202122:j16171819202122 (36)

We also note that fifth order is the first time that ivjsubscript𝑖superscript𝑣𝑗\partial_{i}v^{j}∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_v start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT has to be used as a seed function to form a basis, for example through p3,3(5)subscriptsuperscript5superscript𝑝33\mathbb{C}^{(5)}_{p^{3},3}blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 3 end_POSTSUBSCRIPT above. This is contrasted with the case at fourth order where ijΦsubscript𝑖subscript𝑗Φ\partial_{i}\partial_{j}\Phi∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_Φ is enough D’Amico et al. (2022c).

Converting between the STL basis and the basis of descendants, we find the following expression for the non-local-in-time bias parameters and the basis-of-descendants bias parameters

b~27=b14b2+6b34b4+90b876b9+b16,b~28=b18b9,b~29=4b83+4b9310b113+7b203+b29.formulae-sequencesubscript~𝑏27subscript𝑏14subscript𝑏26subscript𝑏34subscript𝑏490subscript𝑏876subscript𝑏9subscript𝑏16formulae-sequencesubscript~𝑏28subscript𝑏18subscript𝑏9subscript~𝑏294subscript𝑏834subscript𝑏9310subscript𝑏1137subscript𝑏203subscript𝑏29\displaystyle\begin{split}&\tilde{b}_{27}=b_{1}-4b_{2}+6b_{3}-4b_{4}+90b_{8}-7% 6b_{9}+b_{16}\ ,\\ &\tilde{b}_{28}=b_{18}-b_{9}\ ,\\ &\tilde{b}_{29}=-\frac{4b_{8}}{3}+\frac{4b_{9}}{3}-\frac{10b_{11}}{3}+\frac{7b% _{20}}{3}+b_{29}\ .\end{split}start_ROW start_CELL end_CELL start_CELL over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 27 end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 4 italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 6 italic_b start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - 4 italic_b start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + 90 italic_b start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - 76 italic_b start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT 18 end_POSTSUBSCRIPT - italic_b start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT = - divide start_ARG 4 italic_b start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_ARG start_ARG 3 end_ARG + divide start_ARG 4 italic_b start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT end_ARG start_ARG 3 end_ARG - divide start_ARG 10 italic_b start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_ARG start_ARG 3 end_ARG + divide start_ARG 7 italic_b start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_ARG start_ARG 3 end_ARG + italic_b start_POSTSUBSCRIPT 29 end_POSTSUBSCRIPT . end_CELL end_ROW (37)

Appendix D Lower-order bias parameters

Here we show how bias parameters at fourth order appear automatically as biases at fifth order. For notational convenience, in this Appendix we will use ΓΓ\Gammaroman_Γ as the combined index 𝒪m,αsubscript𝒪𝑚𝛼\mathcal{O}_{m},\alphacaligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α, as in Γ(n)𝒪m,α(n)superscriptsubscriptΓ𝑛superscriptsubscriptsubscript𝒪𝑚𝛼𝑛\mathbb{C}_{\Gamma}^{(n)}\equiv\mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT ≡ blackboard_C start_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_α end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT, and ΓnsubscriptΓ𝑛\Gamma_{n}roman_Γ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as the set of the relevant 𝒪msubscript𝒪𝑚\mathcal{O}_{m}caligraphic_O start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and α𝛼\alphaitalic_α at order n𝑛nitalic_n, as defined in the sum in Eq. (9). We start with the fifth-order degeneracy equations. It turns out, as we explicitly check in the ancillary file, that the full set of degeneracy equations satisfied by Γ(5)subscriptsuperscript5Γ\mathbb{C}^{(5)}_{\Gamma}blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT, Eq. (31) with n=5𝑛5n=5italic_n = 5, can be put in the block form

0=ΓΓ4di,Γ(4)Γ(5)(x,t)+ΓΓ5Γ4d~i,Γ(5)Γ(5)(x,t),0subscriptΓsubscriptΓ4subscriptsuperscript𝑑4𝑖Γsubscriptsuperscript5Γ𝑥𝑡subscriptΓsubscriptΓ5subscriptΓ4subscriptsuperscript~𝑑5𝑖Γsubscriptsuperscript5Γ𝑥𝑡\displaystyle\begin{split}0=\sum_{\Gamma\in\Gamma_{4}}d^{(4)}_{i,\Gamma}% \mathbb{C}^{(5)}_{\Gamma}(\vec{x},t)+\sum_{\Gamma\in\Gamma_{5}\setminus\Gamma_% {4}}\tilde{d}^{(5)}_{i,\Gamma}\mathbb{C}^{(5)}_{\Gamma}(\vec{x},t)\ ,\end{split}start_ROW start_CELL 0 = ∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_d start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , roman_Γ end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) + ∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ∖ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT over~ start_ARG italic_d end_ARG start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , roman_Γ end_POSTSUBSCRIPT blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , end_CELL end_ROW (38)

for i=1,,Nd(5)𝑖1superscriptsubscript𝑁𝑑5i=1,\dots,N_{d}^{(5)}italic_i = 1 , … , italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT, with di,Γ(4)=0subscriptsuperscript𝑑4𝑖Γ0d^{(4)}_{i,\Gamma}=0italic_d start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , roman_Γ end_POSTSUBSCRIPT = 0 for i[Nd(4)+1,Nd(5)]𝑖superscriptsubscript𝑁𝑑41superscriptsubscript𝑁𝑑5i\in[N_{d}^{(4)}+1,N_{d}^{(5)}]italic_i ∈ [ italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT + 1 , italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ] and d~i,Γ(5)=0subscriptsuperscript~𝑑5𝑖Γ0\tilde{d}^{(5)}_{i,\Gamma}=0over~ start_ARG italic_d end_ARG start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , roman_Γ end_POSTSUBSCRIPT = 0 for i[1,Nd(4)]𝑖1superscriptsubscript𝑁𝑑4i\in[1,N_{d}^{(4)}]italic_i ∈ [ 1 , italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ]. For i=1,,Nd(4)𝑖1superscriptsubscript𝑁𝑑4i=1,\dots,N_{d}^{(4)}italic_i = 1 , … , italic_N start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT, the second term on the right-hand side of Eq. (38) vanishes, so the Γ(5)subscriptsuperscript5Γ\mathbb{C}^{(5)}_{\Gamma}blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT with ΓΓ4ΓsubscriptΓ4\Gamma\in\Gamma_{4}roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT satisfy the same equations as the fourth-order functions, Eq. (31) with n=4𝑛4n=4italic_n = 4. Therefore we can write them in an analogous way to the n=4𝑛4n=4italic_n = 4 case of Eq. (32), that is

Γ(5)(x,t)=j=1Nb(4)AΓ,j(4)𝔼j(5)(x,t),subscriptsuperscript5Γ𝑥𝑡superscriptsubscript𝑗1superscriptsubscript𝑁𝑏4subscriptsuperscript𝐴4Γ𝑗subscriptsuperscript𝔼5𝑗𝑥𝑡\mathbb{C}^{(5)}_{\Gamma}(\vec{x},t)=\sum_{j=1}^{N_{b}^{(4)}}A^{(4)}_{\Gamma,j% }\,\mathbb{E}^{(5)}_{j}(\vec{x},t)\ ,blackboard_C start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_Γ , italic_j end_POSTSUBSCRIPT blackboard_E start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (39)

for ΓΓ4ΓsubscriptΓ4\Gamma\in\Gamma_{4}roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, with

𝔼j(5)𝔼j(4)|Γ(4)Γ(5),superscriptsubscript𝔼𝑗5evaluated-atsuperscriptsubscript𝔼𝑗4superscriptsubscriptΓ4superscriptsubscriptΓ5\mathbb{E}_{j}^{(5)}\equiv\mathbb{E}_{j}^{(4)}\Big{|}_{\mathbb{C}_{\Gamma}^{(4% )}\rightarrow\mathbb{C}_{\Gamma}^{(5)}}\ ,blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ≡ blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT → blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , (40)

for j=1,,Nb(4)𝑗1superscriptsubscript𝑁𝑏4j=1,\dots,N_{b}^{(4)}italic_j = 1 , … , italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT. Said another way, since the 𝔼j(4)superscriptsubscript𝔼𝑗4\mathbb{E}_{j}^{(4)}blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT are just linear combinations of some Γ(4)superscriptsubscriptΓ4\mathbb{C}_{\Gamma}^{(4)}blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT, we define 𝔼j(5)superscriptsubscript𝔼𝑗5\mathbb{E}_{j}^{(5)}blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT for j=1,,Nb(4)𝑗1superscriptsubscript𝑁𝑏4j=1,\dots,N_{b}^{(4)}italic_j = 1 , … , italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT to be the same expressions as 𝔼j(4)superscriptsubscript𝔼𝑗4\mathbb{E}_{j}^{(4)}blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT, but with Γ(4)superscriptsubscriptΓ4\mathbb{C}_{\Gamma}^{(4)}blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT replaced with Γ(5)superscriptsubscriptΓ5\mathbb{C}_{\Gamma}^{(5)}blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT, i.e.

𝔼j(4)(x,t)=ΓΓ4βj,Γ(4)Γ(4)(x,t),𝔼j(5)(x,t)=ΓΓ4βj,Γ(4)Γ(5)(x,t),formulae-sequencesuperscriptsubscript𝔼𝑗4𝑥𝑡subscriptΓsubscriptΓ4subscriptsuperscript𝛽4𝑗ΓsuperscriptsubscriptΓ4𝑥𝑡superscriptsubscript𝔼𝑗5𝑥𝑡subscriptΓsubscriptΓ4subscriptsuperscript𝛽4𝑗ΓsuperscriptsubscriptΓ5𝑥𝑡\displaystyle\begin{split}&\mathbb{E}_{j}^{(4)}(\vec{x},t)=\sum_{\Gamma\in% \Gamma_{4}}\beta^{(4)}_{j,\Gamma}\mathbb{C}_{\Gamma}^{(4)}(\vec{x},t)\ ,\\ &\mathbb{E}_{j}^{(5)}(\vec{x},t)=\sum_{\Gamma\in\Gamma_{4}}\beta^{(4)}_{j,% \Gamma}\mathbb{C}_{\Gamma}^{(5)}(\vec{x},t)\ ,\end{split}start_ROW start_CELL end_CELL start_CELL blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j , roman_Γ end_POSTSUBSCRIPT blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL blackboard_E start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_β start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j , roman_Γ end_POSTSUBSCRIPT blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , end_CELL end_ROW (41)

for some coefficients βj,Γ(4)subscriptsuperscript𝛽4𝑗Γ\beta^{(4)}_{j,\Gamma}italic_β start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j , roman_Γ end_POSTSUBSCRIPT.

Now, the bias expansion at fifth order is

δg(5)(x,t)=ΓΓ5cΓ(t)Γ(5)(x,t).superscriptsubscript𝛿𝑔5𝑥𝑡subscriptΓsubscriptΓ5subscript𝑐Γ𝑡superscriptsubscriptΓ5𝑥𝑡\delta_{g}^{(5)}(\vec{x},t)=\sum_{\Gamma\in\Gamma_{5}}c_{\Gamma}(t)\mathbb{C}_% {\Gamma}^{(5)}(\vec{x},t)\ .italic_δ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT ( italic_t ) blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) . (42)

The sum above can be split into a sum over ΓΓ4ΓsubscriptΓ4\Gamma\in\Gamma_{4}roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and a sum over ΓΓ5Γ4ΓsubscriptΓ5subscriptΓ4\Gamma\in\Gamma_{5}\setminus\Gamma_{4}roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ∖ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. For the sum over Γ4subscriptΓ4\Gamma_{4}roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, we have

ΓΓ4cΓ(t)Γ(5)(x,t)=j=1Nb(4)ej(4)(t)𝔼j(5)(x,t),subscriptΓsubscriptΓ4subscript𝑐Γ𝑡superscriptsubscriptΓ5𝑥𝑡superscriptsubscript𝑗1superscriptsubscript𝑁𝑏4subscriptsuperscript𝑒4𝑗𝑡subscriptsuperscript𝔼5𝑗𝑥𝑡\sum_{\Gamma\in\Gamma_{4}}c_{\Gamma}(t)\mathbb{C}_{\Gamma}^{(5)}(\vec{x},t)=% \sum_{j=1}^{N_{b}^{(4)}}e^{(4)}_{j}(t)\mathbb{E}^{(5)}_{j}(\vec{x},t)\ ,∑ start_POSTSUBSCRIPT roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT ( italic_t ) blackboard_C start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) blackboard_E start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t ) , (43)

where we have used Eq. (39) and the definition of ej(4)(t)superscriptsubscript𝑒𝑗4𝑡e_{j}^{(4)}(t)italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_t ) below Eq. (33). Thus, the degeneracy equations Eq. (38) ensure that it is exactly the fourth-order bias parameters ej(4)(t)superscriptsubscript𝑒𝑗4𝑡e_{j}^{(4)}(t)italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_t ) that appear in Eq. (43). Then, for the sum over ΓΓ5Γ4ΓsubscriptΓ5subscriptΓ4\Gamma\in\Gamma_{5}\setminus\Gamma_{4}roman_Γ ∈ roman_Γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ∖ roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT in Eq. (42), one can solve for the remaining Nb(5)Nb(4)superscriptsubscript𝑁𝑏5superscriptsubscript𝑁𝑏4N_{b}^{(5)}-N_{b}^{(4)}italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 5 ) end_POSTSUPERSCRIPT - italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT basis elements using the rest of the degeneracy equations in Eq. (38), and this will introduce the additional bias parameters that were not present at fourth order. Since this is true for generic bias parameters ej(4)(t)superscriptsubscript𝑒𝑗4𝑡e_{j}^{(4)}(t)italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_t ), it is true in particular for the basis of descendants bias parameters bj(4)(t)superscriptsubscript𝑏𝑗4𝑡b_{j}^{(4)}(t)italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_t ) in Eq. (34).

References