Non-Gaussianity in rapid-turn multi-field inflation

Oksana Iarygina    M.C. David Marsh    Gustavo Salinas
Abstract

We show that theories of inflation with multiple, rapidly turning fields can generate large amounts of non-Gaussianity. We consider a general theory with two fields, an arbitrary field-space metric, and a potential that supports sustained, rapidly turning field trajectories. Our analysis accounts for non-zero field cross-correlation and does not fix the power spectra of curvature and isocurvature perturbations to be equal at horizon crossing. Using the δN𝛿𝑁\delta Nitalic_δ italic_N formalism, we derive a novel, analytical formula for bispectrum generated from multi-field mixing on super-horizon scales. Rapid-turn inflation can produce a bispectrum with several potentially large contributions that are not necessarily of the local shape. We exemplify the applicability of our formula with a fully explicit model and show that the new contributions indeed can generate a large amplitude of local non-Gaussianity, \fnl𝒪(1)similar-to\fnl𝒪1\fnl\sim{\cal O}(1)∼ caligraphic_O ( 1 ). These results will be important when interpreting the outcomes of future observations.

1 Introduction

Primordial non-Gaussianity is a powerful tool to discriminate between models of inflation by probing the dynamics and field content of the very early Universe. Single-field models of inflation most strongly couple momenta of similar wavelengths and result in bispectra that are highly suppressed in the ‘squeezed limit’ where one long-wavelength-mode couple to two short-wavelength-modes. By contrast, multiple-field models of inflation and reheating can lead to couplings between different wavelengths and substantial signals in the squeezed limit of the bispectrum. Conventionally, this distinction can be quantified through the amplitude, \fnl, of the local shape function of the bispectrum. The parameter \fnl is of particular interest as upcoming observations of the Cosmic Microwave Background (CMB) and the Large Scale Structure (LSS) aim to be sensitive to \fnl𝒪(1)similar-toabsent𝒪1\sim{\cal O}(1)∼ caligraphic_O ( 1 ) [1, 2]. A detection of local non-Gaussianity with an amplitude of 𝒪(1)𝒪1{\cal O}(1)caligraphic_O ( 1 ) would rule out all attractor models of single-field inflation [3, 4].

What would a hypothetical detection of \fnlO(1)similar-toabsent𝑂1\sim O(1)∼ italic_O ( 1 ) tell us about multiple-field inflation? Despite much progress on this question over the past two decades, the full answer remains elusive and a topic of active research. Several techniques have been used to calculate non-Gaussianities in multifield inflation, including the δN𝛿𝑁\delta Nitalic_δ italic_N-formalism [5, 6, 7] that captures non-Gaussianities generated from non-linear, classical evolution after horizon crossing and the in-in formalism that capture the non-linear effects at all scales [8]. More recently, interesting developments within the “cosmological bootstrap” program, with a focus on massless exchanges during multi-field inflation (Ref.[9] and references therein) provide another model-independent way to compute bispectrum using a perturbative approach111See also novel “cosmological flow” framework [10]..

It is well established that large amplitudes of local non-Gaussianity can be generated through non-linear evolution close to the end of inflation or after it in spectator models, e.g. the curvaton model [11, 12, 13, 14], hybrid and multi-brid inflation [15, 16, 17, 18, 19], modulated and tachyonic (p)reheating scenarios [20, 21, 22, 23, 24, 25, 26]. Generating substantial levels of non-Gaussianity during a phase of multiple-field inflation is more challenging, as has been established in the simplest multi-field models and using general arguments [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], in studies of ultraviolet-motivated frameworks [40, 41, 42, 43, 44, 45, 46, 47] as well as using a statistical approach with random potentials [48, 49, 50]. However, most studies to date have been limited to the slow-roll, slow-turn (SRST) approximation. In this approximation, elucidating analytical results [51, 52, 53] have been obtained for the amplitude \fnl using the δN𝛿𝑁\delta Nitalic_δ italic_N and transfer function [54, 55] formalisms: in terms of the tensor-to-scalar ratio r𝑟ritalic_r and the isocurvature-to-curvature transfer function T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT, large amplitude of non-Gaussianities during SRST multiple field inflation can only be generated from the contribution

\fnl56r8(T𝒮1+T𝒮2)3lnT𝒮,56𝑟8superscriptsubscript𝑇𝒮1superscriptsubscript𝑇𝒮23subscriptperpendicular-toabsentsubscript𝑇𝒮\fnl\fnl\supset\frac{5}{6}\sqrt{\frac{r}{8}}\left(\frac{T_{\cal RS}}{\sqrt{1+T_{% \cal RS}^{2}}}\right)^{3}\partial_{\perp*}\ln T_{\cal RS}\,,⊃ divide start_ARG 5 end_ARG start_ARG 6 end_ARG square-root start_ARG divide start_ARG italic_r end_ARG start_ARG 8 end_ARG end_ARG ( divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT roman_ln italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ,

where subscriptperpendicular-toabsent\partial_{\perp*}∂ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT denotes a field-space derivative perpendicular to the direction of motion at horizon crossing (cf. [50] for similar expressions)222Throughout this paper we use natural units in which the reduced Planck mass is set to unity.. Since r𝑟ritalic_r is observationally constrained to be small and the cubed factor involving T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT can never be large, it follows that generating \fnl𝒪(1)similar-to\fnl𝒪1\fnl\sim{\cal O}(1)∼ caligraphic_O ( 1 ) requires an exponential sensitivity of the transfer function to the precise trajectory at horizon crossing. Such a strong sensitivity is rare even in models with random potentials, hundreds of light fields, and appreciable amounts of isocurvature-to-curvature transfer [50]333An example of sensitivity to initial conditions is a field trajectory that is rolling along a ridge in the potential, see, for instance, [56].. This suggests that generating large \fnl  in SRST multifield models requires some fine-tuning that can be difficult to realise.

However, over the past few years, it has increasingly been appreciated that multifield inflation need not rely on the slow-turn approximation. Indeed, in negatively curved field spaces, slow-turn trajectories can become unstable and transition into rapidly turning inflationary solutions [57, 58, 59, 60]. Moreover, for certain field-space geometries, rapid-turn solutions can be realised without fine-tuning the inflationary potential [61, 62, 63, 64, 65] (which may be particularly interesting in the light of recent conjectures on the properties of effective potentials coming from ultraviolet completions [66] with recent developments [67, 68, 69, 70, 71, 72, 73]). Non-Gaussianities arising at horizon crossing have been studied in detail in multi-field models with negatively curved field spaces [74, 75, 76, 77] and shown to peak near flattened triangle configurations with small contributions to \fnl444See also a recent review on non-Gaussianity in multi-field inflation with curved field space [78]. . However, rapid-turn trajectories can lead to efficient conversion of isocurvature perturbations into adiabatic modes, thereby providing a source of non-Gaussianity during inflation captured by the δN𝛿𝑁\delta Nitalic_δ italic_N formalism.

In this paper we use the δN𝛿𝑁\delta Nitalic_δ italic_N formalism to derive a semi-analytical formula for non-Gaussianity in two-field models of inflation with sustained rapid turns. We identify new model-independent contributions to the non-Gaussianity parameter of the form

\fnlη2ϵI4+M~I5+M~I6,\fnl\supset\frac{\eta_{\perp*}}{\sqrt{2\epsilon_{*}}}\,I_{4}+\tilde{M}_{\perp% \perp*}\,I_{5}+\tilde{M}_{\perp\parallel*}\,I_{6},⊃ divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ,

where η/2ϵsubscript𝜂perpendicular-toabsent2subscriptitalic-ϵ\eta_{\perp*}/\sqrt{2\epsilon_{*}}italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG is the turn rate of field trajectory, M~absubscript~𝑀𝑎𝑏\tilde{M}_{ab*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b ∗ end_POSTSUBSCRIPT is a parameter that encodes the background mass matrix and Ii=Ii(T𝒮,𝒞𝒮,P𝒮/P)subscript𝐼𝑖subscript𝐼𝑖subscript𝑇𝒮subscript𝒞𝒮subscript𝑃𝒮subscript𝑃I_{i}=I_{i}\left(T_{\cal RS},{\cal C}_{\cal RS},P_{\cal S}/P_{\cal R}\right)italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT , caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT / italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ) are time-dependent coefficients that depend on the transfer function T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT, cross-correlation power spectrum 𝒞𝒮subscript𝒞𝒮{\cal C}_{\cal RS}caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT and ratio of isocurvature to curvature power spectra P𝒮/Psubscript𝑃𝒮subscript𝑃P_{\cal S}/P_{\cal R}italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT / italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT. We demonstrate that these new terms do not depend on initial conditions and give a significant contribution to the non-Gaussianity when the field trajectory is rapidly turning. It follows that large amplitudes, cf. \fnl𝒪(1)similar-toabsent𝒪1\sim{\cal O}(1)∼ caligraphic_O ( 1 ), can be generated in rapid-turn models of inflation. The full bispectrum receives contributions from both sub-horizon and super-horizon evolution and need not peak in the local shape; still, large amplitude of local non-Gaussianities can be observationally interesting even when the bispectrum receives significant contributions from other shapes.

The structure of the paper is as follows. In Section 2 we introduce background equations of motion as well as other background parameters relevant for further layout of the paper. In Section 3 we review the δN𝛿𝑁\delta Nitalic_δ italic_N formalism and apply it to compute two-point and three-point correlation functions in models of rapid-turn multi-field inflation. We discuss the general resulting formula for fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT, its non-locality and scale-dependence. In order to provide further analysis, we express the non-Gaussianity parameter via power spectrum at horizon crossing as well as at the end of inflation. Assuming scale-invariant power spectrum at horizon crossing, we compare our result with the one obtained before in the literature in SRST approximation. We further illustrate our findings with an example in Section 4. We conclude in Section 5.

2 Background Dynamics

We investigate general two-field inflation models that are minimally coupled to gravity, described by the action of the form

S=d4xg[Mpl22R12gμνGab(ϕ)μϕaνϕbV(ϕa)],𝑆superscript𝑑4𝑥𝑔delimited-[]superscriptsubscript𝑀pl22𝑅12superscript𝑔𝜇𝜈subscript𝐺𝑎𝑏italic-ϕsubscript𝜇superscriptitalic-ϕ𝑎subscript𝜈superscriptitalic-ϕ𝑏𝑉superscriptitalic-ϕ𝑎S=\int d^{4}x\sqrt{-g}\left[\frac{M_{\rm pl}^{2}}{2}R-\frac{1}{2}g^{\mu\nu}G_{% ab}(\phi)\partial_{\mu}\phi^{a}\partial_{\nu}\phi^{b}-V(\phi^{a})\right],italic_S = ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g end_ARG [ divide start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_R - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ( italic_ϕ ) ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT - italic_V ( italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) ] , (2.1)

where gμνsubscript𝑔𝜇𝜈g_{\mu\nu}italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT is the spacetime metric, R𝑅Ritalic_R is the Ricci scalar constructed from spacetime quantities, Gab(ϕ)subscript𝐺𝑎𝑏italic-ϕG_{ab}(\phi)italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ( italic_ϕ ) is the field-space metric, and V(ϕa)𝑉superscriptitalic-ϕ𝑎V(\phi^{a})italic_V ( italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) is the multi-field potential. We use standard conventions, with Latin indices denoting scalar fields and Greek indices representing spacetime coordinates.

Before discussing the different regimes of multi-field inflation, it is important to define certain quantities. An important parameter that controls the successful duration of inflation and encodes the deviation from the de Sitter expansion during inflation is the first slow-roll parameter, defined as

ϵ=HH=12Gabϕaϕb,italic-ϵsuperscript𝐻𝐻12subscript𝐺𝑎𝑏superscriptitalic-ϕ𝑎superscriptitalic-ϕ𝑏\epsilon=-\frac{H^{\prime}}{H}=\frac{1}{2}G_{ab}\phi^{\prime a}\phi^{\prime b},italic_ϵ = - divide start_ARG italic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_a end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_b end_POSTSUPERSCRIPT , (2.2)

where ()=d/dN=H1d/dt(^{\prime})=d/dN=H^{-1}d/dt( start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_d / italic_d italic_N = italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d / italic_d italic_t denotes a derivative with respect to the number of e-folds N𝑁Nitalic_N given by dN=Hdt𝑑𝑁𝐻𝑑𝑡dN=Hdtitalic_d italic_N = italic_H italic_d italic_t, with H𝐻Hitalic_H being the Hubble parameter. The requirement ϵ1much-less-thanitalic-ϵ1\epsilon\ll 1italic_ϵ ≪ 1 ensures a nearly exponential expansion during inflation. In order to have a prolonged quasi-de Sitter stage of inflation, ϵitalic-ϵ\epsilonitalic_ϵ needs to be small for a sufficient number of Hubble times. This happens when the second slow-roll parameter, defined as

ηHϵ2ϵ,subscript𝜂𝐻superscriptitalic-ϵ2italic-ϵ\eta_{H}\equiv-\frac{\epsilon^{\prime}}{2\epsilon},italic_η start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≡ - divide start_ARG italic_ϵ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_ϵ end_ARG , (2.3)

is much smaller than one. Both conditions ϵ1,|ηH|1formulae-sequencemuch-less-thanitalic-ϵ1much-less-thansubscript𝜂𝐻1\epsilon\ll 1,|\eta_{H}|\ll 1italic_ϵ ≪ 1 , | italic_η start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT | ≪ 1 define the slow-roll approximation.

The covariant acceleration of the field vector is given by

ηa=DNϕa,superscript𝜂𝑎subscript𝐷𝑁superscriptitalic-ϕ𝑎\eta^{a}=D_{N}\phi^{\prime a},italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_a end_POSTSUPERSCRIPT , (2.4)

where the covariant derivative on the field manifold with respect to the number of e-folds is defined as DN=defϕaasuperscriptdefsubscript𝐷𝑁superscriptitalic-ϕ𝑎subscript𝑎D_{N}\stackrel{{\scriptstyle\text{def}}}{{=}}\phi^{\prime a}\nabla_{a}italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG def end_ARG end_RELOP italic_ϕ start_POSTSUPERSCRIPT ′ italic_a end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, with asubscript𝑎\nabla_{a}∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT being the covariant derivative in field space. The covariant derivative DNsubscript𝐷𝑁D_{N}italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT acts on an arbitrary field-space vector Aa=Aa(ϕ)superscript𝐴𝑎superscript𝐴𝑎italic-ϕA^{a}=A^{a}(\phi)italic_A start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_A start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_ϕ ) as

DNAa=defNϕbbAa=NAa+ΓbcaϕbAcsuperscriptdefsubscript𝐷𝑁superscript𝐴𝑎subscript𝑁superscriptitalic-ϕ𝑏subscript𝑏superscript𝐴𝑎subscript𝑁superscript𝐴𝑎subscriptsuperscriptΓ𝑎𝑏𝑐superscriptitalic-ϕ𝑏superscript𝐴𝑐D_{N}A^{a}\stackrel{{\scriptstyle\text{def}}}{{=}}\partial_{N}\phi^{b}\nabla_{% b}A^{a}=\partial_{N}A^{a}+\Gamma^{a}_{bc}\phi^{\prime b}A^{c}italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG def end_ARG end_RELOP ∂ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = ∂ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_b end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT (2.5)

where ΓbcasubscriptsuperscriptΓ𝑎𝑏𝑐\Gamma^{a}_{bc}roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT are the Christoffel symbols computed using Gabsubscript𝐺𝑎𝑏G_{ab}italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT.

To better understand the dynamics and perturbations in multi-field inflation it is useful to define unit vectors that are tangent and normal to the field trajectory. In the two-field case, these vectors, denoted by easubscriptsuperscript𝑒𝑎parallel-toe^{a}_{\parallel}italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT and easubscriptsuperscript𝑒𝑎perpendicular-toe^{a}_{\perp}italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT respectively, can be defined as follows [79, 80, 81]

eaϕaGbcϕbϕc,eas(N)(GbcDNebDNec)1/2DNea,formulae-sequencesubscriptsuperscript𝑒𝑎parallel-tosuperscriptitalic-ϕ𝑎subscript𝐺𝑏𝑐superscriptitalic-ϕ𝑏superscriptitalic-ϕ𝑐subscriptsuperscript𝑒𝑎perpendicular-to𝑠𝑁superscriptsubscript𝐺𝑏𝑐subscript𝐷𝑁subscriptsuperscript𝑒𝑏parallel-tosubscript𝐷𝑁subscriptsuperscript𝑒𝑐parallel-to12subscript𝐷𝑁subscriptsuperscript𝑒𝑎parallel-to\displaystyle e^{a}_{\parallel}\equiv\frac{\phi^{\prime a}}{\sqrt{G_{bc}\phi^{% \prime b}\phi^{\prime c}}},\quad e^{a}_{\perp}\equiv s(N)\left(G_{bc}D_{N}e^{b% }_{\parallel}D_{N}e^{c}_{\parallel}\right)^{-1/2}D_{N}e^{a}_{\parallel},italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT ≡ divide start_ARG italic_ϕ start_POSTSUPERSCRIPT ′ italic_a end_POSTSUPERSCRIPT end_ARG start_ARG square-root start_ARG italic_G start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_b end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_c end_POSTSUPERSCRIPT end_ARG end_ARG , italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≡ italic_s ( italic_N ) ( italic_G start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT , (2.6)

where s(N)=±1𝑠𝑁plus-or-minus1s(N)=\pm 1italic_s ( italic_N ) = ± 1 and is introduced to avoid unphysical discontinuities555In the two-field case the normal vector can be conveniently defined as NadetGϵabebsubscript𝑁𝑎det𝐺subscriptitalic-ϵ𝑎𝑏subscriptsuperscript𝑒𝑏parallel-toN_{a}\equiv\sqrt{{\rm det}G}\,\epsilon_{ab}e^{b}_{\parallel}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≡ square-root start_ARG roman_det italic_G end_ARG italic_ϵ start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT, where ϵabsubscriptitalic-ϵ𝑎𝑏\epsilon_{ab}italic_ϵ start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT is the two-dimensional Levi-Civita symbol with ϵ11=1subscriptitalic-ϵ111\epsilon_{11}=1italic_ϵ start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = 1.. We refer to this orthonormal basis as the kinematical basis. The covariant acceleration ηasuperscript𝜂𝑎\eta^{a}italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT can be expanded in this basis as

ηa=ηea+ηea.superscript𝜂𝑎subscript𝜂parallel-tosubscriptsuperscript𝑒𝑎parallel-tosubscript𝜂perpendicular-tosubscriptsuperscript𝑒𝑎perpendicular-to\eta^{a}=\eta_{\parallel}e^{a}_{\parallel}+\eta_{\perp}e^{a}_{\perp}.italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT + italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT . (2.7)

Note that the parallel component of the covariant acceleration is related to the slow-roll parameter ηHsubscript𝜂𝐻\eta_{H}italic_η start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT as η=2ϵηHsubscript𝜂parallel-to2italic-ϵsubscript𝜂𝐻\eta_{\parallel}=-\sqrt{2\epsilon}\eta_{H}italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = - square-root start_ARG 2 italic_ϵ end_ARG italic_η start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. The definitions in equations (2.6) and (2.7) imply that rate of change of the tangent basis vector is given by [51]

eaDNea=η2ϵ.subscript𝑒perpendicular-toabsent𝑎subscript𝐷𝑁subscriptsuperscript𝑒𝑎parallel-tosubscript𝜂perpendicular-to2italic-ϵe_{\perp a}D_{N}e^{a}_{\parallel}=\frac{\eta_{\perp}}{\sqrt{2\epsilon}}.italic_e start_POSTSUBSCRIPT ⟂ italic_a end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG . (2.8)

Therefore, we refer to η/2ϵsubscript𝜂perpendicular-to2italic-ϵ\eta_{\perp}/\sqrt{2\epsilon}italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ end_ARG as the turn rate parameter666It is worth noting that our definition of the turn rate parameter is related to the other commonly used definition of the turn rate ΩeaDteaΩsubscript𝑒perpendicular-toabsent𝑎subscript𝐷𝑡subscriptsuperscript𝑒𝑎parallel-to\Omega\equiv-e_{{\perp}a}D_{t}e^{a}_{\parallel}roman_Ω ≡ - italic_e start_POSTSUBSCRIPT ⟂ italic_a end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT as Ω=Hη/2ϵΩ𝐻subscript𝜂perpendicular-to2italic-ϵ\Omega=-H\eta_{\perp}/\sqrt{2\epsilon}roman_Ω = - italic_H italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ end_ARG.. It shows how quickly the field trajectory is changing direction along the field manifold and parameterizes the deviation of inflationary trajectory from a geodesic. Along a geodesic, DNea=0subscript𝐷𝑁subscriptsuperscript𝑒𝑎parallel-to0D_{N}e^{a}_{\parallel}=0italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = 0 and the turn rate is zero by definition. We also define the speed up rate as the combination η/2ϵsubscript𝜂parallel-to2italic-ϵ\eta_{\parallel}/\sqrt{2\epsilon}italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ end_ARG, since it measures the logarithmic rate of change of the field speed η/2ϵ=(logϵ)subscript𝜂parallel-to2italic-ϵsuperscriptitalic-ϵ\eta_{\parallel}/\sqrt{2\epsilon}=(\log\epsilon)^{\prime}italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ end_ARG = ( roman_log italic_ϵ ) start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Given the definitions in equation (2.6) the turn rate is always positive (when non-zero), but the speed-up rate can be either positive or negative depending on whether the field speed is increasing or decreasing. In terms of speed-up rate, the slow-roll approximation can be written as

ϵ1,|η2ϵ|1.formulae-sequencemuch-less-thanitalic-ϵ1much-less-thansubscript𝜂parallel-to2italic-ϵ1\epsilon\ll 1,\quad\left|\frac{\eta_{\parallel}}{\sqrt{2\epsilon}}\right|\ll 1.italic_ϵ ≪ 1 , | divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG | ≪ 1 . (2.9)

The slow-roll slow-turn (SRST) approximation, which has been assumed in the majority of works on multi-field inflation, is defined as [51]

ϵ1,|η2ϵ|1,η2ϵ1,formulae-sequencemuch-less-thanitalic-ϵ1formulae-sequencemuch-less-thansubscript𝜂parallel-to2italic-ϵ1much-less-thansubscript𝜂perpendicular-to2italic-ϵ1\epsilon\ll 1,\quad\left|\frac{\eta_{\parallel}}{\sqrt{2\epsilon}}\right|\ll 1% ,\quad\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\ll 1,italic_ϵ ≪ 1 , | divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG | ≪ 1 , divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ≪ 1 , (2.10)

and is valid when the deviation of the inflationary trajectory from a geodesic is small. On the contrary, when deviation is large, one may define the slow-roll rapid-turn (SRRT) approximation

ϵ1,|η2ϵ|1,η2ϵ1.formulae-sequencemuch-less-thanitalic-ϵ1formulae-sequencemuch-less-thansubscript𝜂parallel-to2italic-ϵ1much-greater-thansubscript𝜂perpendicular-to2italic-ϵ1\epsilon\ll 1,\quad\left|\frac{\eta_{\parallel}}{\sqrt{2\epsilon}}\right|\ll 1% ,\quad\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\gg 1.italic_ϵ ≪ 1 , | divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG | ≪ 1 , divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ≫ 1 . (2.11)

A sustained rapid-turn regime requires the additional condition

ηη1.much-less-thansuperscriptsubscript𝜂perpendicular-tosubscript𝜂perpendicular-to1\frac{\eta_{\perp}^{\prime}}{\eta_{\perp}}\ll 1.divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG ≪ 1 . (2.12)

In this paper we only consider sustained rapid-turn inflation models, for which both equations (2.11) and (2.12) are satisfied.

The background equation of motion for scalar fields derived from the action in Eq. (2.1) can be written in terms of the covariant acceleration ηasuperscript𝜂𝑎\eta^{a}italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and the first slow-roll parameter ϵitalic-ϵ\epsilonitalic_ϵ as

ηa(3ϵ)+ϕa+alnV=0.superscript𝜂𝑎3italic-ϵsuperscriptitalic-ϕ𝑎superscript𝑎𝑉0\frac{\eta^{a}}{(3-\epsilon)}+\phi^{\prime a}+\nabla^{a}\ln V=0.divide start_ARG italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) end_ARG + italic_ϕ start_POSTSUPERSCRIPT ′ italic_a end_POSTSUPERSCRIPT + ∇ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT roman_ln italic_V = 0 . (2.13)

Using this equation and the definition of ϵitalic-ϵ\epsilonitalic_ϵ in Eq. (2.2), we find the relation

aϵ=M~abϕb,subscript𝑎italic-ϵsubscript~𝑀𝑎𝑏superscriptitalic-ϕ𝑏\mathbf{\nabla}_{a}\epsilon=-\tilde{M}_{ab}\phi^{\prime b},∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_ϵ = - over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_b end_POSTSUPERSCRIPT , (2.14)

where we have defined the ‘modified mass matrix’ as

M~ab=def11+η2ϵ(3ϵ)2(Mab+aηb(3ϵ)),superscriptdefsubscript~𝑀𝑎𝑏continued-fraction11subscript𝜂parallel-to2italic-ϵsuperscript3italic-ϵ2subscript𝑀𝑎𝑏subscript𝑎subscript𝜂𝑏3italic-ϵ\tilde{M}_{ab}\stackrel{{\scriptstyle\rm def}}{{=}}\cfrac{1}{1+\frac{\eta_{% \parallel}\sqrt{2\epsilon}}{(3-\epsilon)^{2}}}\left(M_{ab}+\frac{\nabla_{a}% \eta_{b}}{(3-\epsilon)}\right),over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP continued-fraction start_ARG 1 end_ARG start_ARG 1 + divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT square-root start_ARG 2 italic_ϵ end_ARG end_ARG start_ARG ( 3 - italic_ϵ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG ( italic_M start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT + divide start_ARG ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) end_ARG ) , (2.15)

with Mab=ablnVsubscript𝑀𝑎𝑏subscript𝑎subscript𝑏𝑉M_{ab}=\nabla_{a}\nabla_{b}\ln Vitalic_M start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT = ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT roman_ln italic_V being the background mass matrix. It is worth noting that because of additional contribution coming from the covariant acceleration, the modified mass matrix M~absubscript~𝑀𝑎𝑏\tilde{M}_{ab}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT is not symmetric. For the forthcoming computations, it is convenient to express here the relation between M~absuperscript~𝑀𝑎𝑏\tilde{M}^{ab}over~ start_ARG italic_M end_ARG start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT and ηasuperscript𝜂𝑎\eta^{a}italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT. To obtain this relation, we act with DNsubscript𝐷𝑁D_{N}italic_D start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT on the background equations of motion (2.13) to find

ηa=2ϵebM~b.a\eta^{a}=-\sqrt{2\epsilon}\,e^{b}_{\parallel}\tilde{M}_{b}{}^{a}.italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = - square-root start_ARG 2 italic_ϵ end_ARG italic_e start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_FLOATSUPERSCRIPT italic_a end_FLOATSUPERSCRIPT . (2.16)

Therefore, projecting ηasuperscript𝜂𝑎\eta^{a}italic_η start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT onto the kinematical basis vectors, we get

M~=η2ϵ,M~=η2ϵ.\displaystyle\tilde{M}_{\parallel\parallel}=-\frac{\eta_{\parallel}}{\sqrt{2% \epsilon}},\quad\tilde{M}_{\parallel\perp}=-\frac{\eta_{\perp}}{\sqrt{2% \epsilon}}.over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ∥ ∥ end_POSTSUBSCRIPT = - divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG , over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ∥ ⟂ end_POSTSUBSCRIPT = - divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG . (2.17)

The components of aϵsubscript𝑎italic-ϵ\mathbf{\nabla}_{a}\epsilon∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_ϵ can also be related to the covariant acceleration and to the modified mass matrix. From (2.14) and (2.17) we obtain

(ϵ)=η,(ϵ)=2ϵM~.(\nabla\epsilon)_{\parallel}=\eta_{\parallel},\quad(\nabla\epsilon)_{\perp}=-% \sqrt{2\epsilon}\,\tilde{M}_{\perp\parallel}~{}.( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT , ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = - square-root start_ARG 2 italic_ϵ end_ARG over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ end_POSTSUBSCRIPT . (2.18)

Note that, in general, M~M~\tilde{M}_{\perp\parallel}\neq\tilde{M}_{\parallel\perp}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ end_POSTSUBSCRIPT ≠ over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ∥ ⟂ end_POSTSUBSCRIPT.

3 Analysis of Perturbations

In this section, we express the curvature and isocurvature perturbations at the end of inflation in terms of these same quantities at horizon crossing using the δN𝛿𝑁\delta Nitalic_δ italic_N formalism [5, 6, 7]. This is then used to determine an analytical expression for the non-Gaussianity parameter fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT. In Section 3.1, we briefly review the δN𝛿𝑁\delta Nitalic_δ italic_N formalism and use it in Section 3.2 to obtain the power spectra of both curvature and isocurvature perturbations as well as the cross-correlation between the two as a function of the two-point correlation functions of field perturbations at horizon crossing. In Section 3.3, we perform a computation of the non-Gaussianity parameter, fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT,777From now on we drop the superscript ‘local’ and refer to the non-Gaussianity parameter as fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT. in the case of large turn-rate, η/2ϵ1much-greater-thansubscript𝜂perpendicular-to2italic-ϵ1\eta_{\perp}/\sqrt{2\epsilon}\gg 1italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ end_ARG ≫ 1, and with non-zero cross-correlation at horizon crossing, 𝒞𝒮0subscript𝒞𝒮0{\cal C}_{\cal RS*}\neq 0caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT ≠ 0. The resulting analytical formula for fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT is the main result of this paper. We express it in terms of horizon-crossing quantities in Section 3.4, and in terms of quantities evaluated at the end of inflation in Section 3.6. In Section 3.5, we compare our result with the expression in the slow-roll slow-turn approximation.

3.1 Review of δN𝛿𝑁\delta Nitalic_δ italic_N Formalism

The δN𝛿𝑁\delta Nitalic_δ italic_N formalism is a powerful tool that allows for the calculation of curvature perturbations from inflation on super-horizon scales while avoiding the full machinery of higher-order perturbation theory. This approach is both simple and physically intuitive, making it an attractive option for understanding the dynamics of the Universe during inflation.

The curvature perturbation may be defined as a scalar perturbation to the spatial metric for a given foliation of spacetime. The spatial metric gijsubscript𝑔𝑖𝑗g_{ij}italic_g start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT can be written as [82, 83, 84]

gij=a2(t)γije2ψ(t,𝐱)=a~2(t,𝐱)γij,subscript𝑔𝑖𝑗superscript𝑎2𝑡subscript𝛾𝑖𝑗superscripte2𝜓𝑡𝐱superscript~𝑎2𝑡𝐱subscript𝛾𝑖𝑗g_{ij}=a^{2}(t)\gamma_{ij}\,\mathrm{e}^{2\psi(t,\mathbf{x})}=\tilde{a}^{2}(t,% \mathbf{x})\gamma_{ij}~{},italic_g start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT roman_e start_POSTSUPERSCRIPT 2 italic_ψ ( italic_t , bold_x ) end_POSTSUPERSCRIPT = over~ start_ARG italic_a end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t , bold_x ) italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , (3.1)

where a(t)𝑎𝑡a(t)italic_a ( italic_t ) is the scale factor, γijsubscript𝛾𝑖𝑗\gamma_{ij}italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT is a matrix with unit determinant, ψ(t,𝐱)𝜓𝑡𝐱\psi(t,\mathbf{x})italic_ψ ( italic_t , bold_x ) is a perturbation and a~(t,𝐱)~𝑎𝑡𝐱\tilde{a}(t,\mathbf{x})over~ start_ARG italic_a end_ARG ( italic_t , bold_x ) is the local scale factor that describes the expansion of the Universe including perturbations at each point in spacetime. The curvature perturbation on uniform density hypersurfaces, ζ(t,𝐱)𝜁𝑡𝐱\zeta(t,\mathbf{x})italic_ζ ( italic_t , bold_x ), is defined on the time-slicing where the spacial hypersurfaces have uniform density, i.e. ψUD(t,𝐱)ζ(t,𝐱)subscript𝜓UD𝑡𝐱𝜁𝑡𝐱\psi_{\rm UD}(t,\mathbf{x})\equiv\zeta(t,\mathbf{x})italic_ψ start_POSTSUBSCRIPT roman_UD end_POSTSUBSCRIPT ( italic_t , bold_x ) ≡ italic_ζ ( italic_t , bold_x ). The local scale factor on the uniform density slice is then a~(t,𝐱)=a(t)eζ(t,𝐱)~𝑎𝑡𝐱𝑎𝑡superscripte𝜁𝑡𝐱\tilde{a}(t,\mathbf{x})=a(t)\mathrm{e}^{\zeta(t,\mathbf{x})}over~ start_ARG italic_a end_ARG ( italic_t , bold_x ) = italic_a ( italic_t ) roman_e start_POSTSUPERSCRIPT italic_ζ ( italic_t , bold_x ) end_POSTSUPERSCRIPT. Flat hypersurfaces are defined on flat time-slices with ψflat(t,𝐱)=0subscript𝜓flat𝑡𝐱0\psi_{\rm flat}(t,\mathbf{x})=0italic_ψ start_POSTSUBSCRIPT roman_flat end_POSTSUBSCRIPT ( italic_t , bold_x ) = 0.

The basis of the δN𝛿𝑁\delta Nitalic_δ italic_N formalism is the counting of the number of e-folds during inflation in different local patches of the Universe [6]. This is done by considering the number of e-folds between an initial flat hypersurface ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and a final uniform density hypersurface ΣΣ\Sigmaroman_Σ. The difference in the number of e-folds between different local patches of the Universe then gives the curvature perturbation on the final hypersurface.

The flat slice ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is defined at time tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, which refers to the time when all the relevant modes have exited the horizon, i.e. time of horizon crossing. The amount of expansion (given in number of e-folds) from a point in ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT to another point in the uniform energy density slice ΣΣ\Sigmaroman_Σ is then given by

N(t,𝐱)=ln(a~(t,𝐱)a(t)),𝑁𝑡𝐱~𝑎𝑡𝐱𝑎subscript𝑡N(t,\mathbf{x})=\ln\left(\frac{\tilde{a}(t,\mathbf{x})}{a(t_{*})}\right)~{},italic_N ( italic_t , bold_x ) = roman_ln ( divide start_ARG over~ start_ARG italic_a end_ARG ( italic_t , bold_x ) end_ARG start_ARG italic_a ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) end_ARG ) , (3.2)

with t𝑡titalic_t being the time coordinate at the final slice. The δN𝛿𝑁\delta Nitalic_δ italic_N formalism then relates the amount of expansion from a point in ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT to a point in ΣΣ\Sigmaroman_Σ to the curvature perturbation ζ(t,𝐱)𝜁𝑡𝐱\zeta(t,\mathbf{x})italic_ζ ( italic_t , bold_x ) at the final slice ΣΣ\Sigmaroman_Σ as [5]

ζ(t,𝐱)=δN=N(t,𝐱)N0(t),𝜁𝑡𝐱𝛿𝑁𝑁𝑡𝐱subscript𝑁0𝑡\zeta(t,\mathbf{x})=\delta N=N(t,\mathbf{x})-N_{0}(t)~{},italic_ζ ( italic_t , bold_x ) = italic_δ italic_N = italic_N ( italic_t , bold_x ) - italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) , (3.3)

where N0(t)=ln[a(t)/a(t)]subscript𝑁0𝑡𝑎𝑡𝑎subscript𝑡N_{0}(t)=\ln[a(t)/a(t_{*})]italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) = roman_ln [ italic_a ( italic_t ) / italic_a ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ] is the unperturbed number of e-folds, i.e., the amount of expansion from ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT to a flat hypersurface ΣsuperscriptΣ\Sigma^{\prime}roman_Σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT that is tangent to ΣΣ\Sigmaroman_Σ at the point (t,𝐱)𝑡𝐱(t,\mathbf{x})( italic_t , bold_x ).

The number of e-folds N(t,𝐱)𝑁𝑡𝐱N(t,\mathbf{x})italic_N ( italic_t , bold_x ) is in general a function of the values of the field and field velocities at the initial slice ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. Here, we assume that given a point in the uniform density slice ΣΣ\Sigmaroman_Σ, there corresponds a unique point (t,𝐱)subscript𝑡subscript𝐱(t_{*},\mathbf{x}_{*})( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) in ΣsubscriptΣ\Sigma_{*}roman_Σ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT along the world-line of the cosmological fluid. Therefore, in general δNδN(ϕa(t,𝐱),ϕ˙a(t,𝐱);t)𝛿𝑁𝛿𝑁superscriptitalic-ϕ𝑎subscript𝑡subscript𝐱superscript˙italic-ϕ𝑎subscript𝑡subscript𝐱𝑡\delta N\equiv\delta N(\phi^{a}(t_{*},\mathbf{x}_{*}),\dot{\phi}^{a}(t_{*},% \mathbf{x}_{*});t)italic_δ italic_N ≡ italic_δ italic_N ( italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) , over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ; italic_t ). Under certain assumptions, the field velocities can be expressed as functions of the values of the fields only. This is the case, for example, if the field trajectory follows a slow-roll attractor [5]. Another case of interest in which this happens is for rapid-turn attractors [64]. In those instances, the number of e-folds becomes a function in field space, instead of in phase space, and one has δNN(ϕa(t,𝐱);t)𝛿𝑁𝑁superscriptitalic-ϕ𝑎subscript𝑡subscript𝐱𝑡\delta N\equiv N(\phi^{a}(t_{*},\mathbf{x}_{*});t)italic_δ italic_N ≡ italic_N ( italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ; italic_t ). One can then expand it as series on the initial field perturbations at time tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT as

δN=Naδϕa+12Nabδϕaδϕb+𝛿𝑁subscript𝑁𝑎𝛿superscriptsubscriptitalic-ϕ𝑎12subscript𝑁𝑎𝑏𝛿superscriptsubscriptitalic-ϕ𝑎𝛿superscriptsubscriptitalic-ϕ𝑏\delta N=N_{a}\delta\phi_{*}^{a}+\frac{1}{2}N_{ab}\delta\phi_{*}^{a}\delta\phi% _{*}^{b}+...italic_δ italic_N = italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT + … (3.4)

with Na=aN|subscript𝑁𝑎evaluated-atsubscript𝑎𝑁N_{a}=\nabla_{a}N|_{*}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N | start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, Nab=abN|subscript𝑁𝑎𝑏evaluated-atsubscript𝑎subscript𝑏𝑁N_{ab}=\nabla_{a}\nabla_{b}N|_{*}italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT = ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N | start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, where the covariant derivatives are computed with respect to the field values at horizon exit, and δϕa(t,𝐱)δϕa𝛿superscriptitalic-ϕ𝑎subscript𝑡subscript𝐱𝛿superscriptsubscriptitalic-ϕ𝑎\delta\phi^{a}(t_{*},\mathbf{x}_{*})\equiv\delta\phi_{*}^{a}italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ≡ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are covariant gauge-invariant field perturbations described in detail in Appendix A. In the next section we use the δN𝛿𝑁\delta Nitalic_δ italic_N formalism to compute two-point functions.

3.2 Two-point functions

We can now use the δN𝛿𝑁\delta Nitalic_δ italic_N formalism to find the curvature and isocurvature power spectra and their correlated cross spectrum, defined in Fourier space as

k1k2=(2π)3δ(3)(k1+k2)P(k1)k1𝒮k2=(2π)3δ(3)(k1+k2)C𝒮(k1)𝒮k1𝒮k2=(2π)3δ(3)(k1+k2)P𝒮(k1),delimited-⟨⟩subscriptsubscript𝑘1subscriptsubscript𝑘2superscript2𝜋3superscript𝛿3subscript𝑘1subscript𝑘2subscript𝑃subscript𝑘1delimited-⟨⟩subscriptsubscript𝑘1subscript𝒮subscript𝑘2superscript2𝜋3superscript𝛿3subscript𝑘1subscript𝑘2subscript𝐶𝒮subscript𝑘1delimited-⟨⟩subscript𝒮subscript𝑘1subscript𝒮subscript𝑘2superscript2𝜋3superscript𝛿3subscript𝑘1subscript𝑘2subscript𝑃𝒮subscript𝑘1\displaystyle\begin{split}\langle\mathcal{R}_{\vec{k}_{1}}\mathcal{R}_{\vec{k}% _{2}}\rangle&=(2\pi)^{3}\delta^{(3)}(\vec{k}_{1}+\vec{k}_{2})P_{\mathcal{R}}(k% _{1})\\ \langle\mathcal{R}_{\vec{k}_{1}}\mathcal{S}_{\vec{k}_{2}}\rangle&=(2\pi)^{3}% \delta^{(3)}(\vec{k}_{1}+\vec{k}_{2})C_{\mathcal{R}\mathcal{S}}(k_{1})\\ \langle\mathcal{S}_{\vec{k}_{1}}\mathcal{S}_{\vec{k}_{2}}\rangle&=(2\pi)^{3}% \delta^{(3)}(\vec{k}_{1}+\vec{k}_{2})P_{\mathcal{S}}(k_{1})~{},\end{split}start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , end_CELL end_ROW (3.5)

with \mathcal{R}caligraphic_R and 𝒮𝒮\mathcal{S}caligraphic_S denoting the comoving curvature perturbation and the isocurvature perturbation, respectively. These are related to the field perturbations in the kinematical basis as [55]

=δϕ2ϵ,𝒮=δϕ2ϵ.formulae-sequence𝛿subscriptitalic-ϕparallel-to2italic-ϵ𝒮𝛿subscriptitalic-ϕperpendicular-to2italic-ϵ\mathcal{R}=\frac{\delta\phi_{\parallel}}{\sqrt{2\epsilon}}~{},~{}~{}~{}~{}~{}% ~{}~{}~{}~{}~{}\mathcal{S}=\frac{\delta\phi_{\perp}}{\sqrt{2\epsilon}}~{}.caligraphic_R = divide start_ARG italic_δ italic_ϕ start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG , caligraphic_S = divide start_ARG italic_δ italic_ϕ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG . (3.6)

At superhorizon scales, kaHmuch-less-than𝑘𝑎𝐻k\ll aHitalic_k ≪ italic_a italic_H, the comoving curvature perturbation coincides with the curvature at uniform-density slices [85], i.e., kaHζmuch-less-than𝑘𝑎𝐻𝜁\mathcal{R}\xrightarrow{k\ll aH}\zetacaligraphic_R start_ARROW start_OVERACCENT italic_k ≪ italic_a italic_H end_OVERACCENT → end_ARROW italic_ζ, so we can use Eqs. (3.3) and (3.4) obtaining

k1k2=ζk1ζk2=NaNbδϕak1δϕbk2delimited-⟨⟩subscriptsubscript𝑘1subscriptsubscript𝑘2delimited-⟨⟩subscript𝜁subscript𝑘1subscript𝜁subscript𝑘2subscript𝑁𝑎subscript𝑁𝑏delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2\langle\mathcal{R}_{\vec{k}_{1}}\mathcal{R}_{\vec{k}_{2}}\rangle=\langle\zeta_% {\vec{k}_{1}}\zeta_{\vec{k}_{2}}\rangle=N_{a}N_{b}\langle\delta{\phi_{*}^{a}}_% {\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2}}\rangle⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = ⟨ italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ (3.7)

to lowest order in the field perturbations. The power spectrum of field perturbations Pϕabsubscriptsuperscript𝑃absent𝑎𝑏italic-ϕP^{*ab}_{\phi}italic_P start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT at horizon crossing is defined as

δϕak1δϕbk2=(2π)3δ(3)(k1+k2)Pϕab(k1),delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2superscript2𝜋3superscript𝛿3subscript𝑘1subscript𝑘2subscriptsuperscript𝑃absent𝑎𝑏italic-ϕsubscript𝑘1\langle\delta{\phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2}}% \rangle=(2\pi)^{3}\delta^{(3)}(\vec{k}_{1}+\vec{k}_{2})P^{*ab}_{\phi}(k_{1})~{},⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_P start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , (3.8)

which can be plugged into Eq. (3.7) along with the definition of the curvature power spectrum in Eq. (3.5) to give

P(k)=NaNbPϕab(k).subscript𝑃𝑘subscript𝑁𝑎subscript𝑁𝑏subscriptsuperscript𝑃absent𝑎𝑏italic-ϕ𝑘P_{\mathcal{R}}(k)=N_{a}N_{b}P^{*ab}_{\phi}(k)~{}.italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k ) = italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_k ) . (3.9)

We can relate the power spectra defined in Eq. (3.5) to the power spectrum of field perturbations using the relations in Eq. (3.6) to obtain

k1k2=12ϵδϕk1δϕk2P=Pϕ2ϵk1𝒮k2=12ϵδϕk1δϕk2C𝒮=Pϕ2ϵ𝒮k1𝒮k2=12ϵδϕk1δϕk2P𝒮=Pϕ2ϵ\begin{split}\langle\mathcal{R}_{\vec{k}_{1}}\mathcal{R}_{\vec{k}_{2}}\rangle&% =\frac{1}{2\epsilon}\langle\delta{\phi_{\parallel}}_{\vec{k}_{1}}\delta{\phi_{% \parallel}}_{\vec{k}_{2}}\rangle~{}\Rightarrow~{}P_{\mathcal{R*}}=\frac{P_{% \phi}^{*\parallel\parallel}}{2\epsilon_{*}}\\ \langle\mathcal{R}_{\vec{k}_{1}}\mathcal{S}_{\vec{k}_{2}}\rangle&=\frac{1}{2% \epsilon}\langle\delta{\phi_{\parallel}}_{\vec{k}_{1}}\delta{\phi_{\perp}}_{% \vec{k}_{2}}\rangle~{}\Rightarrow~{}C_{\mathcal{RS*}}=\frac{P_{\phi}^{*% \parallel\perp}}{2\epsilon_{*}}\\ \langle\mathcal{S}_{\vec{k}_{1}}\mathcal{S}_{\vec{k}_{2}}\rangle&=\frac{1}{2% \epsilon}\langle\delta{\phi_{\perp}}_{\vec{k}_{1}}\delta{\phi_{\perp}}_{\vec{k% }_{2}}\rangle~{}\Rightarrow~{}P_{\mathcal{S*}}=\frac{P_{\phi}^{*\perp\perp}}{2% \epsilon_{*}}\end{split}start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ end_ARG ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ ⇒ italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT = divide start_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ∥ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ end_ARG ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ ⇒ italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT = divide start_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ⟂ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ end_ARG ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ ⇒ italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT = divide start_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ⟂ ⟂ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_CELL end_ROW (3.10)

where Psubscript𝑃P_{\mathcal{R*}}italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT, C𝒮subscript𝐶𝒮C_{\mathcal{RS*}}italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT and P𝒮subscript𝑃𝒮P_{\mathcal{S*}}italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT are the power spectra and cross-correlation at the time of horizon crossing tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and the projections of the power spectrum of field perturbations along the kinematical basis vectors are given by Pϕ=eaebPϕabP_{\phi}^{*\parallel\parallel}={e_{\parallel}}_{a}{e_{\parallel}}_{b}P_{\phi}^% {*ab}italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ∥ end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT, Pϕ=eaebPϕabP_{\phi}^{*\parallel\perp}={e_{\parallel}}_{a}{e_{\perp}}_{b}P_{\phi}^{*ab}italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ⟂ end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT and Pϕ=eaebPϕabsuperscriptsubscript𝑃italic-ϕperpendicular-toabsentperpendicular-tosubscriptsubscript𝑒perpendicular-to𝑎subscriptsubscript𝑒perpendicular-to𝑏superscriptsubscript𝑃italic-ϕabsent𝑎𝑏P_{\phi}^{*\perp\perp}={e_{\perp}}_{a}{e_{\perp}}_{b}P_{\phi}^{*ab}italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ⟂ ⟂ end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT. Ultimately, we are interested in the curvature and isocurvature power spectra and cross-correlations at the end of inflation. These can be expressed in terms of the power spectra at horizon crossing and the so-called transfer functions, defined as [54, 55]

(𝒮)=(1T𝒮0T𝒮𝒮)(𝒮)𝒮1subscript𝑇𝒮0subscript𝑇𝒮𝒮subscriptsubscript𝒮\left(\begin{array}[]{c}\mathcal{R}\\ \mathcal{S}\end{array}\right)=\left(\begin{array}[]{cc}1&T_{\mathcal{RS}}\\ 0&T_{\mathcal{SS}}\end{array}\right)\left(\begin{array}[]{c}\mathcal{R}_{*}\\ \mathcal{S}_{*}\end{array}\right)( start_ARRAY start_ROW start_CELL caligraphic_R end_CELL end_ROW start_ROW start_CELL caligraphic_S end_CELL end_ROW end_ARRAY ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) (3.11)

with T𝒮subscript𝑇𝒮T_{\mathcal{RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT describing the effect of isocurvature perturbations feeding curvature perturbations and T𝒮𝒮subscript𝑇𝒮𝒮T_{\mathcal{SS}}italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT accounting for the decay/growth of isocurvature perturbations during the superhorizon evolution. Note that Eq. (3.11) reflects the fact that, on superhorizon scales, curvature perturbations are conserved in the absence of isocurvature perturbations and that curvature perturbations cannot feed isocurvature perturbations. The transfer function T𝒮subscript𝑇𝒮T_{\mathcal{RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT is proportional to the turn rate of the field trajectory. When the turn rate is large, the sourcing of curvature by isocurvature perturbations becomes significant. It can be computed using the following expressions [54, 55]

T𝒮(N,N)=NN𝑑Nγ(N)T𝒮𝒮(N,N),T𝒮𝒮(N,N)=exp[NN𝑑Nδ(N)],formulae-sequencesubscript𝑇𝒮subscript𝑁𝑁superscriptsubscriptsubscript𝑁𝑁differential-dsuperscript𝑁𝛾superscript𝑁subscript𝑇𝒮𝒮subscript𝑁superscript𝑁subscript𝑇𝒮𝒮subscript𝑁𝑁expdelimited-[]superscriptsubscriptsubscript𝑁𝑁differential-dsuperscript𝑁𝛿superscript𝑁T_{\cal{RS}}(N_{*},N)=\int_{N_{*}}^{N}dN^{\prime}\gamma(N^{\prime})T_{\cal SS}% (N_{*},N^{\prime}),\quad T_{\cal{SS}}(N_{*},N)={\rm exp}\left[\int_{N_{*}}^{N}% dN^{\prime}\delta(N^{\prime})\right],italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) = ∫ start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_γ ( italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) = roman_exp [ ∫ start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_d italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_δ ( italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] , (3.12)

where functions γ𝛾\gammaitalic_γ and δ𝛿\deltaitalic_δ for general turning trajectory are defined in a slow-roll limit as [86, 58]

γ=2η2ϵ,δ=2ϵV+V43(η2ϵ)2.\gamma=2\frac{\eta_{\perp}}{\sqrt{2\epsilon}},\quad\delta=-2\epsilon-\frac{{% \cal M}_{\perp\perp}}{V}+\frac{{\cal M}_{\parallel\parallel}}{V}-\frac{4}{3}% \left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)^{2}.italic_γ = 2 divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG , italic_δ = - 2 italic_ϵ - divide start_ARG caligraphic_M start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT end_ARG start_ARG italic_V end_ARG + divide start_ARG caligraphic_M start_POSTSUBSCRIPT ∥ ∥ end_POSTSUBSCRIPT end_ARG start_ARG italic_V end_ARG - divide start_ARG 4 end_ARG start_ARG 3 end_ARG ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (3.13)

Here =eaebab{\cal M}_{\perp\perp}=e_{\perp a}e_{\perp}^{b}{\cal M}^{a}{}_{b}caligraphic_M start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT ⟂ italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT caligraphic_M start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_b end_FLOATSUBSCRIPT and =eaebab{\cal M}_{\parallel\parallel}=e_{\parallel a}e_{\parallel}^{b}{\cal M}^{a}{}_{b}caligraphic_M start_POSTSUBSCRIPT ∥ ∥ end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT ∥ italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT caligraphic_M start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_b end_FLOATSUBSCRIPT with

a=bGacbcVH2Rdfbaϕdϕf,{\cal M}^{a}{}_{b}=G^{ac}\nabla_{b}\nabla_{c}V-H^{2}R^{a}_{dfb}\phi^{\prime d}% \phi^{\prime f},caligraphic_M start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_b end_FLOATSUBSCRIPT = italic_G start_POSTSUPERSCRIPT italic_a italic_c end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_V - italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_f italic_b end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_d end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_f end_POSTSUPERSCRIPT , (3.14)

where Rdfbasubscriptsuperscript𝑅𝑎𝑑𝑓𝑏R^{a}_{dfb}italic_R start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_f italic_b end_POSTSUBSCRIPT is the Riemann tensor of the field-space manifold. The duration of sourcing of curvature perturbation by isocurvature depends on the evolution of isocurvature perturbation, which may be traced by the evolution of T𝒮𝒮subscript𝑇𝒮𝒮T_{\cal{SS}}italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT. At first glance, a large turn rate would give rise to an exponential decay of isocurvature perturbation and hence a very limited time for sourcing. However, it is not always the case. To provide more intuition, let us introduce the mass of isocurvature perturbation, μ2superscript𝜇2\mu^{2}italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, that can be written as [79, 80]

μ2=eaebabV+ϵH2+3H2(η2ϵ)2=+3H2(η2ϵ)2,superscript𝜇2superscriptsubscript𝑒perpendicular-to𝑎superscriptsubscript𝑒perpendicular-to𝑏subscript𝑎subscript𝑏𝑉italic-ϵsuperscript𝐻23superscript𝐻2superscriptsubscript𝜂perpendicular-to2italic-ϵ2subscriptperpendicular-toabsentperpendicular-to3superscript𝐻2superscriptsubscript𝜂perpendicular-to2italic-ϵ2\mu^{2}=e_{\perp}^{a}e_{\perp}^{b}\nabla_{a}\nabla_{b}V+\epsilon H^{2}\mathbb{% R}+3H^{2}\left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)^{2}={\cal M}_{% \perp\perp}+3H^{2}\left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)^{2},italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_V + italic_ϵ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT blackboard_R + 3 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = caligraphic_M start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT + 3 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (3.15)

where \mathbb{R}blackboard_R is the Ricci scalar of the field-space metric. In the case of canonical kinetic terms and field spaces with positive scalar curvature, for large turn rates, the isocurvature fluctuation becomes heavy and may be integrated out. This allows for an effective single-field description of inflation [81], which leads to the non-Gaussianity of equilateral shape. However, this single-field effective theory does not hold for general rapid-turn models with curved field spaces. For instance, when the field-space metric is a hyperbolic manifold, the Ricci scalar of the field-space is negative, and isocurvature mass μ2superscript𝜇2\mu^{2}italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT may become negative even for large turn rates. This is the essence of geometrical destabilization of inflation [57]. The exponential growth of the unstable fields can drive the system to new attractor solutions. One class of such models is called transiently tachyonic scenarios [59] that can be described by an effective single-field theory with an imaginary speed of sound around Hubble crossing. In this case, the bispectrum peaks in the folded shape [59, 74, 75, 76, 77]. Moreover, when all the contributions in equation (3.15) cancel each other, the isocurvature perturbation becomes exactly massless. One example of this is the shift-symmetric orbital inflation model [67], where the isocurvature modes are massless and freeze on superhorizon scales, constantly sourcing the curvature perturbation and producing the non-Gaussianity of the local shape.

It is important to note that the entropic perturbations are not guaranteed to be negligible at horizon crossing and can influence the bispectrum on superhorizon scales. In this case, single-field effective descriptions may capture the dominant contribution to the bispectrum but still miss contributions generated on superhorizon scales. To determine if this is the case, one must follow the evolution of the bispectrum, e.g. through the δN𝛿𝑁\delta Nitalic_δ italic_N-formalism until the entropic modes become sufficiently suppressed.

In this work, we derive a general formula for the bispectrum sourced on superhorizon scales in rapid-turn models without restrictive assumptions about the magnitude of the entropy mass. In Section 4, we will find that this general formula can capture substantial sourcing of the bispectrum even when the isocurvature perturbation decays a few e-folds after horizon crossing.

With the definition (3.11), the two-point functions of perturbations at the end of inflation are then given by

k1k2=k1k2+2T𝒮k1𝒮k2+T𝒮2𝒮k1𝒮k2k1𝒮k2=T𝒮𝒮k1𝒮k2+T𝒮T𝒮𝒮𝒮k1𝒮k2𝒮k1𝒮k2=T𝒮𝒮2𝒮k1𝒮k2delimited-⟨⟩subscriptsubscript𝑘1subscriptsubscript𝑘2delimited-⟨⟩subscriptsubscriptsubscript𝑘1subscriptsubscriptsubscript𝑘22subscript𝑇𝒮delimited-⟨⟩subscriptsubscriptsubscript𝑘1subscriptsubscript𝒮subscript𝑘2superscriptsubscript𝑇𝒮2delimited-⟨⟩subscriptsubscript𝒮subscript𝑘1subscriptsubscript𝒮subscript𝑘2delimited-⟨⟩subscriptsubscript𝑘1subscript𝒮subscript𝑘2subscript𝑇𝒮𝒮delimited-⟨⟩subscriptsubscriptsubscript𝑘1subscriptsubscript𝒮subscript𝑘2subscript𝑇𝒮subscript𝑇𝒮𝒮delimited-⟨⟩subscriptsubscript𝒮subscript𝑘1subscriptsubscript𝒮subscript𝑘2delimited-⟨⟩subscript𝒮subscript𝑘1subscript𝒮subscript𝑘2superscriptsubscript𝑇𝒮𝒮2delimited-⟨⟩subscriptsubscript𝒮subscript𝑘1subscriptsubscript𝒮subscript𝑘2\begin{split}\langle{\mathcal{R}}_{\vec{k}_{1}}{\mathcal{R}}_{\vec{k}_{2}}% \rangle&=\langle{\mathcal{R}_{*}}_{\vec{k}_{1}}{\mathcal{R}_{*}}_{\vec{k}_{2}}% \rangle+2T_{\mathcal{RS}}\langle{\mathcal{R}_{*}}_{\vec{k}_{1}}{\mathcal{S}_{*% }}_{\vec{k}_{2}}\rangle+T_{\mathcal{RS}}^{2}\langle{\mathcal{S}_{*}}_{\vec{k}_% {1}}{\mathcal{S}_{*}}_{\vec{k}_{2}}\rangle\\ \langle{\mathcal{R}}_{\vec{k}_{1}}{\mathcal{S}}_{\vec{k}_{2}}\rangle&=T_{% \mathcal{SS}}\langle{\mathcal{R}_{*}}_{\vec{k}_{1}}{\mathcal{S}_{*}}_{\vec{k}_% {2}}\rangle+T_{\mathcal{RS}}T_{\mathcal{SS}}\langle{\mathcal{S}_{*}}_{\vec{k}_% {1}}{\mathcal{S}_{*}}_{\vec{k}_{2}}\rangle\\ \langle{\mathcal{S}}_{\vec{k}_{1}}{\mathcal{S}}_{\vec{k}_{2}}\rangle&=T_{% \mathcal{SS}}^{2}\langle{\mathcal{S}_{*}}_{\vec{k}_{1}}{\mathcal{S}_{*}}_{\vec% {k}_{2}}\rangle\end{split}start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = ⟨ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ⟨ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟨ caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ⟨ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ⟨ caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL end_ROW start_ROW start_CELL ⟨ caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL start_CELL = italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟨ caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ end_CELL end_ROW (3.16)

which implies that the curvature power spectra can be expressed as

P=P+2T𝒮C𝒮+T𝒮2P𝒮C𝒮=T𝒮𝒮C𝒮+T𝒮T𝒮𝒮P𝒮P𝒮=T𝒮𝒮2P𝒮.subscript𝑃subscript𝑃2subscript𝑇𝒮subscript𝐶𝒮superscriptsubscript𝑇𝒮2subscript𝑃𝒮subscript𝐶𝒮subscript𝑇𝒮𝒮subscript𝐶𝒮subscript𝑇𝒮subscript𝑇𝒮𝒮subscript𝑃𝒮subscript𝑃𝒮superscriptsubscript𝑇𝒮𝒮2subscript𝑃𝒮\begin{split}P_{\mathcal{R}}&=P_{\mathcal{R*}}+2T_{\mathcal{RS}}C_{\mathcal{RS% *}}+T_{\mathcal{RS}}^{2}P_{\mathcal{S*}}\\ C_{\mathcal{RS}}&=T_{\mathcal{SS}}C_{\mathcal{RS*}}+T_{\mathcal{RS}}T_{% \mathcal{SS}}P_{\mathcal{S*}}\\ P_{\mathcal{S}}&=T_{\mathcal{SS}}^{2}P_{\mathcal{S*}}~{}.\end{split}start_ROW start_CELL italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT end_CELL start_CELL = italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_CELL start_CELL = italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT end_CELL start_CELL = italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT . end_CELL end_ROW (3.17)

The curvature power spectrum given in Eq. (3.17) can then be expressed in terms of the power spectra of field perturbations using the result in Eq. (3.10), which gives

P=12ϵ(Pϕ+2T𝒮Pϕ+T𝒮2Pϕ).P_{\mathcal{R}}=\frac{1}{2\epsilon_{*}}(P_{\phi}^{*\parallel\parallel}+2T_{% \mathcal{RS}}P_{\phi}^{*\parallel\perp}+T_{\mathcal{RS}}^{2}P_{\phi}^{*\perp% \perp})~{}.italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ∥ end_POSTSUPERSCRIPT + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ⟂ end_POSTSUPERSCRIPT + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ⟂ ⟂ end_POSTSUPERSCRIPT ) . (3.18)

At the same time, Eq. (3.9) can be used to obtain

P=N2Pϕ+2NNPϕ+N2PϕP_{\mathcal{R}}=N_{\parallel}^{2}P_{\phi}^{*\parallel\parallel}+2N_{\parallel}% N_{\perp}P_{\phi}^{*\parallel\perp}+N_{\perp}^{2}P_{\phi}^{*\perp\perp}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ∥ end_POSTSUPERSCRIPT + 2 italic_N start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ∥ ⟂ end_POSTSUPERSCRIPT + italic_N start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ ⟂ ⟂ end_POSTSUPERSCRIPT (3.19)

where the components of the gradient of N𝑁Nitalic_N are defined by the relation

Na=Nea+Nea.subscript𝑁𝑎subscript𝑁parallel-tosubscriptsubscript𝑒parallel-to𝑎subscript𝑁perpendicular-tosubscriptsubscript𝑒perpendicular-to𝑎N_{a}=N_{\parallel}{e_{\parallel}}_{a}+N_{\perp}{e_{\perp}}_{a}~{}.italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_N start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT . (3.20)

Comparing Eqs. (3.18) and (3.19) term by term, we get

N=12ϵ,N=T𝒮2ϵ.formulae-sequencesubscript𝑁parallel-to12subscriptitalic-ϵsubscript𝑁perpendicular-tosubscript𝑇𝒮2subscriptitalic-ϵN_{\parallel}=\frac{1}{\sqrt{2\epsilon_{*}}}~{},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}% N_{\perp}=\frac{T_{\mathcal{RS}}}{\sqrt{2\epsilon_{*}}}~{}.italic_N start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG , italic_N start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG . (3.21)

It is convenient to define a unit vector eNasubscriptsubscript𝑒𝑁𝑎{e_{N}}_{a}italic_e start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT along the direction of Nasubscript𝑁𝑎N_{a}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT,

eNa=defcosΔNea+sinΔNea,superscriptdefsubscriptsubscript𝑒𝑁𝑎subscriptΔ𝑁subscriptsubscript𝑒parallel-to𝑎subscriptΔ𝑁subscriptsubscript𝑒perpendicular-to𝑎{e_{N}}_{a}\stackrel{{\scriptstyle\rm def}}{{=}}\cos\Delta_{N}{e_{\parallel}}_% {a}+\sin\Delta_{N}{e_{\perp}}_{a}~{},italic_e start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , (3.22)

where ΔNsubscriptΔ𝑁\Delta_{N}roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT is the correlation angle, which is defined [52] by the relation

tanΔN=T𝒮.subscriptΔ𝑁subscript𝑇𝒮\tan\Delta_{N}=T_{\mathcal{RS}}~{}.roman_tan roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT . (3.23)

These definitions allow one to express the gradient of the number of e-folds as

Na=1+T𝒮22ϵeNa=eNa2ϵcosΔN.subscript𝑁𝑎1superscriptsubscript𝑇𝒮22subscriptitalic-ϵsubscriptsubscript𝑒𝑁𝑎subscriptsubscript𝑒𝑁𝑎2subscriptitalic-ϵsubscriptΔ𝑁N_{a}=\sqrt{\frac{1+T_{\mathcal{RS}}^{2}}{2\epsilon_{*}}}{e_{N}}_{a}=\frac{{e_% {N}}_{a}}{\sqrt{2\epsilon_{*}}\cos\Delta_{N}}~{}.italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG italic_e start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = divide start_ARG italic_e start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG . (3.24)

Using Eq. (3.24), the covariant second derivatives of N(t,𝐱)𝑁𝑡𝐱N(t,\mathbf{x})italic_N ( italic_t , bold_x ) can be written as

Nab=aNb|=aeNb|22ϵcosΔN+Na2(12ϵbϵ+sinΔNcosΔNbTRS)|.subscript𝑁𝑎𝑏evaluated-atsubscript𝑎subscript𝑁𝑏evaluated-atsubscript𝑎subscript𝑒𝑁𝑏22subscriptitalic-ϵsubscriptΔ𝑁evaluated-atsubscript𝑁𝑎212subscriptitalic-ϵsubscript𝑏italic-ϵsubscriptΔ𝑁subscriptΔ𝑁subscript𝑏subscript𝑇𝑅𝑆N_{ab}=\nabla_{a}N_{b}|_{*}=\frac{\nabla_{a}e_{Nb}|_{*}}{2\sqrt{2\epsilon_{*}}% \cos\Delta_{N}}+\frac{N_{a}}{2}\left(-\frac{1}{2\epsilon_{*}}\nabla_{b}% \epsilon+\sin\Delta_{N}\cos\Delta_{N}\nabla_{b}T_{RS}\right)\biggr{|}_{*}~{}.italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT = ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = divide start_ARG ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_N italic_b end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG + divide start_ARG italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ( - divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_ϵ + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT . (3.25)

It is worth noting that in a computation of non-Gaussianity using the δN𝛿𝑁\delta Nitalic_δ italic_N formalism in the SRST approximation the first term in (3.25) projects out and does not contribute to the non-Gaussianity parameter. The reason is that it arises from the combination NaNbNabsubscript𝑁𝑎subscript𝑁𝑏superscript𝑁𝑎𝑏N_{a}N_{b}N^{ab}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT and appears in the form eNaeNbaeNbsubscript𝑒𝑁𝑎subscript𝑒𝑁𝑏superscript𝑎subscriptsuperscript𝑒𝑏𝑁e_{Na}e_{Nb}\,\nabla^{a}e^{b}_{N}italic_e start_POSTSUBSCRIPT italic_N italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_N italic_b end_POSTSUBSCRIPT ∇ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT that gives zero as a product of two orthogonal vectors. However, when the cross-correlation spectrum is non-zero, it provides an additional contribution to the non-Gaussianity. We will show this in detail in the next section.

From the definition (3.22) one can compute the gradient of the normal unit vector

aeNb=cosΔN(cos2ΔNaTRS+θa)(ebTRSeb),\nabla_{a}e_{Nb}=\cos\Delta_{N}(\cos^{2}\Delta_{N}\nabla_{a}T_{RS}+\theta_{a})% (e_{\perp b}-T_{RS}e_{\parallel b}),∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_N italic_b end_POSTSUBSCRIPT = roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) ( italic_e start_POSTSUBSCRIPT ⟂ italic_b end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT italic_R italic_S end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ italic_b end_POSTSUBSCRIPT ) , (3.26)

where in the last step we defined the vector θasuperscript𝜃𝑎\theta^{a}italic_θ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT as aeb=defθaebsuperscriptdefsubscript𝑎subscriptsubscript𝑒parallel-to𝑏subscript𝜃𝑎subscriptsubscript𝑒perpendicular-to𝑏\nabla_{a}{e_{\parallel}}_{b}\stackrel{{\scriptstyle\rm def}}{{=}}\theta_{a}{e% _{\perp}}_{b}∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP italic_θ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT, which in turn implies aeb=θaebsubscript𝑎subscriptsubscript𝑒perpendicular-to𝑏subscript𝜃𝑎subscriptsubscript𝑒parallel-to𝑏\nabla_{a}{e_{\perp}}_{b}=-\theta_{a}{e_{\parallel}}_{b}∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = - italic_θ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT. One may find that θasubscript𝜃𝑎\theta_{a}italic_θ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is given by

θa=η(3ϵ)2M~aecc(12ϵ+η(3ϵ)2)M~aecc.superscript𝜃𝑎subscript𝜂perpendicular-tosuperscript3italic-ϵ2superscript~𝑀𝑎subscriptsuperscriptsubscript𝑒parallel-to𝑐𝑐12italic-ϵsubscript𝜂parallel-tosuperscript3italic-ϵ2superscript~𝑀𝑎subscriptsuperscriptsubscript𝑒perpendicular-to𝑐𝑐\theta^{a}=\frac{\eta_{\perp}}{(3-\epsilon)^{2}}\tilde{M}^{a}{}_{c}e_{% \parallel}^{c}-\left(\frac{1}{\sqrt{2\epsilon}}+\frac{\eta_{\parallel}}{(3-% \epsilon)^{2}}\right)\tilde{M}^{a}{}_{c}e_{\perp}^{c}~{}.italic_θ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG over~ start_ARG italic_M end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_c end_FLOATSUBSCRIPT italic_e start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT - ( divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG + divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) over~ start_ARG italic_M end_ARG start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_c end_FLOATSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT . (3.27)

Let us project now θasuperscript𝜃𝑎\theta^{a}italic_θ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT into tangent and normal directions. Using (2.14),(2.17) and (2.18) we find

θ=η2ϵ,θ=η(3ϵ)2M~(12ϵ+η(3ϵ)2)M~.\displaystyle\theta_{\parallel}=\frac{\eta_{\perp}}{2\epsilon},\quad\theta_{% \perp}=\frac{\eta_{\perp}}{(3-\epsilon)^{2}}\tilde{M}_{\perp\parallel}-\left(% \frac{1}{\sqrt{2\epsilon}}+\frac{\eta_{\parallel}}{(3-\epsilon)^{2}}\right)% \tilde{M}_{\perp\perp}.italic_θ start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT = divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ end_ARG , italic_θ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ end_POSTSUBSCRIPT - ( divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG + divide start_ARG italic_η start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT end_ARG start_ARG ( 3 - italic_ϵ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT . (3.28)

Having established the relations above, we can now proceed with the computation of the three-point functions.

3.3 Bispectrum of curvature perturbations

In this section, we turn our attention to the calculation of the three-point functions of curvature perturbations. The bispectrum of the curvature perturbation ζ𝜁\zetaitalic_ζ is defined via the three-point function

ζk1ζk2ζk3=(2π)3δ(3)(k1+k2+k3)Bζ(k1,k2,k3).delimited-⟨⟩subscript𝜁subscript𝑘1subscript𝜁subscript𝑘2subscript𝜁subscript𝑘3superscript2𝜋3superscript𝛿3subscript𝑘1subscript𝑘2subscript𝑘3subscript𝐵𝜁subscript𝑘1subscript𝑘2subscript𝑘3\left\langle\zeta_{\vec{k}_{1}}\zeta_{\vec{k}_{2}}\zeta_{\vec{k}_{3}}\right% \rangle=(2\pi)^{3}\delta^{(3)}(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3})B_{\zeta}(k% _{1},k_{2},k_{3})~{}.⟨ italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) . (3.29)

Particularly interesting is the ‘local’ bispectrum, which can be realised when the curvature perturbation can be written as a local function of position, i.e. locally in real space, in the form

ζ(x)=ζg(x)35fNLloc(ζg(x)2ζg2(x)),𝜁𝑥subscript𝜁𝑔𝑥35superscriptsubscript𝑓NLlocsubscript𝜁𝑔superscript𝑥2delimited-⟨⟩superscriptsubscript𝜁𝑔2𝑥\zeta(x)=\zeta_{g}(x)-\frac{3}{5}f_{\rm NL}^{\rm loc}\left(\zeta_{g}(x)^{2}-% \langle\zeta_{g}^{2}(x)\rangle\right),italic_ζ ( italic_x ) = italic_ζ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_x ) - divide start_ARG 3 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT ( italic_ζ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ⟨ italic_ζ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) ⟩ ) , (3.30)

where the non-Gaussianity parameter fNLlocsuperscriptsubscript𝑓NLlocf_{\rm NL}^{\rm loc}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT is a constant parameter that encodes the deviation from Gaussianity and ζg(x)subscript𝜁𝑔𝑥\zeta_{g}(x)italic_ζ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_x ) being Gaussian. In this case the bispectrum is called ‘local’ as it appears to be of the ‘local form’

Bζloc(k1,k2,k3)=65fNLloc(P(k1)P(k2)+(k cyclic perms)),superscriptsubscript𝐵𝜁locsubscript𝑘1subscript𝑘2subscript𝑘365superscriptsubscript𝑓NLlocsubscript𝑃subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic permsB_{\zeta}^{\rm loc}(k_{1},k_{2},k_{3})=\frac{6}{5}f_{\rm NL}^{\rm loc}\left(P_% {\mathcal{R}}(k_{1})P_{\mathcal{R}}(k_{2})+(\vec{k}{\rm\text{ cyclic perms}})% \right),italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ) , (3.31)

where (k𝑘\vec{k}over→ start_ARG italic_k end_ARG cyclic perms) represent terms with the momenta kisubscript𝑘𝑖\vec{k}_{i}over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT permuted cyclically. In the case of scale-invariant power spectra the bispectrum further reduces to the ‘local shape’

Bζloc(k1,k2,k3)fNLloc(1k13k23+(k cyclic perms)).proportional-tosuperscriptsubscript𝐵𝜁locsubscript𝑘1subscript𝑘2subscript𝑘3superscriptsubscript𝑓NLloc1superscriptsubscript𝑘13superscriptsubscript𝑘23𝑘 cyclic permsB_{\zeta}^{\rm loc}(k_{1},k_{2},k_{3})\propto f_{\rm NL}^{\rm loc}\left(\frac{% 1}{k_{1}^{3}k_{2}^{3}}+(\vec{k}{\rm\text{ cyclic perms}})\right).italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∝ italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG + ( over→ start_ARG italic_k end_ARG cyclic perms ) ) . (3.32)

We note that (3.30) is directly applicable to single-field models of inflation while in the rest of this paper, we use the general definitions (3.3) and (3.4). Still, the local form of Eq. (3.31) is also most relevant for the super-horizon contribution to the bispectrum in multi-field, slow-turn models of inflation. In rapid-turn models, as we will show, the super-horizon contribution to the bispectrum takes a more general form that only reduces to the local shape under certain conditions.

In general, the bispectrum can be defined as the sum over all shapes

Bζ(k1,k2,k3)typefNLtypeStype(k1,k2,k3),proportional-tosubscript𝐵𝜁subscript𝑘1subscript𝑘2subscript𝑘3subscripttypesubscriptsuperscript𝑓typeNLsubscript𝑆typesubscript𝑘1subscript𝑘2subscript𝑘3B_{\zeta}(k_{1},k_{2},k_{3})\propto\sum\limits_{\rm type}f^{\rm type}_{\rm NL}% S_{\rm type}(k_{1},k_{2},k_{3}),italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∝ ∑ start_POSTSUBSCRIPT roman_type end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT roman_type end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT roman_type end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) , (3.33)

with Stype(k1,k2,k3)subscript𝑆typesubscript𝑘1subscript𝑘2subscript𝑘3S_{\rm type}(k_{1},k_{2},k_{3})italic_S start_POSTSUBSCRIPT roman_type end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) called the shape function. The shape function sets the size of non-Gaussianity as a function of the triangle formed by the three-momenta (k1,k2,k3)subscript𝑘1subscript𝑘2subscript𝑘3(\vec{k}_{1},\vec{k}_{2},\vec{k}_{3})( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) and encodes information about specific dynamics that produce non-Gaussianity [87].

In this work we quantify the amount of non-Gaussianity by the parameter

65fNL=defBζ(k1,k2,k3)P(k1)P(k2)+(k cyclic perms)superscriptdef65subscript𝑓NLsubscript𝐵𝜁subscript𝑘1subscript𝑘2subscript𝑘3subscript𝑃subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic perms-\frac{6}{5}f_{\rm NL}\stackrel{{\scriptstyle\rm def}}{{=}}\frac{B_{\zeta}(k_{% 1},k_{2},k_{3})}{P_{\mathcal{R}}(k_{1})P_{\mathcal{R}}(k_{2})+(\vec{k}{\rm% \text{ cyclic perms}})}~{}- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP divide start_ARG italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) end_ARG (3.34)

and drop the superscript ‘loc’ from now on to highlight that the parameter fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT generally depends on details of the shape function and acquires a scale dependence. A scale dependence happens due to the non-linear evolution of initially Gaussian fluctuations after horizon crossing and/or when Gaussian fields constituting the system have different scale dependence [88]. When the non-Gaussianity is generated by local interactions on superhorizon scales, i.e. the bispectrum has a local form of Eq. (3.31), fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT from Eq. (3.34) reduces to fNLlocsuperscriptsubscript𝑓NLlocf_{\rm NL}^{\rm loc}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT that is just a number.

To lowest order in the expansion on field perturbations, the three-point functions of curvature perturbations are given by

k1k2k3(3)=ζk1ζk2ζk3(3)=NaNbNcδϕak1δϕbk2δϕck3,superscriptdelimited-⟨⟩subscriptsubscript𝑘1subscriptsubscript𝑘2subscriptsubscript𝑘33superscriptdelimited-⟨⟩subscript𝜁subscript𝑘1subscript𝜁subscript𝑘2subscript𝜁subscript𝑘33subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑐subscript𝑘3\left\langle\mathcal{R}_{\vec{k}_{1}}\mathcal{R}_{\vec{k}_{2}}\mathcal{R}_{% \vec{k}_{3}}\right\rangle^{(3)}=\left\langle\zeta_{\vec{k}_{1}}\zeta_{\vec{k}_% {2}}\zeta_{\vec{k}_{3}}\right\rangle^{(3)}=N_{a}N_{b}N_{c}\left\langle\delta{% \phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2}}\delta{\phi_{*}^{% c}}_{\vec{k}_{3}}\right\rangle~{},⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT = ⟨ italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ζ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT = italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ , (3.35)

where we used the δN𝛿𝑁\delta Nitalic_δ italic_N formalism expression given in Eq. (3.4) to lowest order in the expansion. The three-point function δϕak1δϕbk2δϕck3delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑐subscript𝑘3\left\langle\delta{\phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2% }}\delta{\phi_{*}^{c}}_{\vec{k}_{3}}\right\rangle⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ accounts for non-Gaussianities generated around horizon crossing, when some of the relevant modes were still evolving inside the horizon. In this work, we focus on the non-linear evolution of field perturbations on superhorizon scales and how it can lead to new types of non-Gaussianity in rapid-turn models. For that, we make use of the δN𝛿𝑁\delta Nitalic_δ italic_N Formalism, which only captures the non-linear classical evolution well after horizon crossing. The contribution from (3.35), on the other hand, depends on the quantities δϕak1δϕbk2δϕck3delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑐subscript𝑘3\left\langle\delta{\phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2% }}\delta{\phi_{*}^{c}}_{\vec{k}_{3}}\right\rangle⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩, which are determined by the subhorizon evolution of perturbations. Hence, the computation of the non-Gaussianity arising from the contribution described in Eq. (3.35) is beyond the scope of this study. We will, however, get back to discussing the contribution from this term later in Sec. 4.

The next-to-leading order term is given by

k1k2k3(4)=12NaNbNcdδϕak1δϕbk2(δϕcδϕd)k3+(k cyclic perms),superscriptdelimited-⟨⟩subscriptsubscript𝑘1subscriptsubscript𝑘2subscriptsubscript𝑘3412subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2subscript𝛿superscriptsubscriptitalic-ϕ𝑐𝛿superscriptsubscriptitalic-ϕ𝑑subscript𝑘3𝑘 cyclic perms\left\langle\mathcal{R}_{\vec{k}_{1}}\mathcal{R}_{\vec{k}_{2}}\mathcal{R}_{% \vec{k}_{3}}\right\rangle^{(4)}=\frac{1}{2}N_{a}N_{b}N_{cd}\left\langle\delta{% \phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}}_{\vec{k}_{2}}\left(\delta{\phi% _{*}^{c}}\ast\delta{\phi_{*}^{d}}\right)_{\vec{k}_{3}}\right\rangle+(\vec{k}{% \rm\text{ cyclic perms}})~{},⟨ caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT ⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ∗ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ + ( over→ start_ARG italic_k end_ARG cyclic perms ) , (3.36)

where \ast denotes a convolution, i.e.,

(δϕcδϕd)k3=d3k(2π)3δϕckδϕdk3k.subscript𝛿superscriptsubscriptitalic-ϕ𝑐𝛿superscriptsubscriptitalic-ϕ𝑑subscript𝑘3superscript𝑑3𝑘superscript2𝜋3𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑐𝑘𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑑subscript𝑘3𝑘\left(\delta{\phi_{*}^{c}}\ast\delta{\phi_{*}^{d}}\right)_{\vec{k}_{3}}=\int% \frac{d^{3}k}{(2\pi)^{3}}\delta{\phi_{*}^{c}}_{\vec{k}}\delta{\phi_{*}^{d}}_{% \vec{k}_{3}-\vec{k}}~{}.( italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ∗ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT . (3.37)

One can use Wick’s theorem to obtain

δϕak1δϕbk2(δϕcδϕd)k3delimited-⟨⟩𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑎subscript𝑘1𝛿subscriptsuperscriptsubscriptitalic-ϕ𝑏subscript𝑘2subscript𝛿superscriptsubscriptitalic-ϕ𝑐𝛿superscriptsubscriptitalic-ϕ𝑑subscript𝑘3\displaystyle\left\langle\delta{\phi_{*}^{a}}_{\vec{k}_{1}}\delta{\phi_{*}^{b}% }_{\vec{k}_{2}}\left(\delta{\phi_{*}^{c}}\ast\delta{\phi_{*}^{d}}\right)_{\vec% {k}_{3}}\right\rangle⟨ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ∗ italic_δ italic_ϕ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ =\displaystyle== (3.38)
(2π)3δ(3)(k1+k2+\displaystyle(2\pi)^{3}\delta^{(3)}(\vec{k}_{1}+\vec{k}_{2}+( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + k3)NaNbNcd[Pϕac(k1)Pϕbd(k2)+(k cyclic perms)],\displaystyle\vec{k}_{3})N_{a}N_{b}N_{cd}\left[P_{\phi}^{*ac}\left(k_{1}\right% )P_{\phi}^{*bd}\left(k_{2}\right)+(\vec{k}{\rm\text{ cyclic perms}})\right]~{},over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT [ italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_c end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_b italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ] ,

which gives a bispectrum of the local form

Bζ(4)(k1,k2,k3)=NaNbNcd[Pϕac(k1)Pϕbd(k2)+(k cyclic perms)].superscriptsubscript𝐵𝜁4subscript𝑘1subscript𝑘2subscript𝑘3subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑delimited-[]superscriptsubscript𝑃italic-ϕabsent𝑎𝑐subscript𝑘1superscriptsubscript𝑃italic-ϕabsent𝑏𝑑subscript𝑘2𝑘 cyclic permsB_{\zeta}^{(4)}(k_{1},k_{2},k_{3})=N_{a}N_{b}N_{cd}\left[P_{\phi}^{*ac}\left(k% _{1}\right)P_{\phi}^{*bd}\left(k_{2}\right)+(\vec{k}{\rm\text{ cyclic perms}})% \right]~{}.italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT [ italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_c end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_b italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ] . (3.39)

Taking Bζ(k1,k2,k3)=Bζ(3)(k1,k2,k3)+Bζ(4)(k1,k2,k3)subscript𝐵𝜁subscript𝑘1subscript𝑘2subscript𝑘3subscriptsuperscript𝐵3𝜁subscript𝑘1subscript𝑘2subscript𝑘3subscriptsuperscript𝐵4𝜁subscript𝑘1subscript𝑘2subscript𝑘3B_{\zeta}(k_{1},k_{2},k_{3})=B^{(3)}_{\zeta}(k_{1},k_{2},k_{3})+B^{(4)}_{\zeta% }(k_{1},k_{2},k_{3})italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = italic_B start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) + italic_B start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ), with Bζ(3)(k1,k2,k3)subscriptsuperscript𝐵3𝜁subscript𝑘1subscript𝑘2subscript𝑘3B^{(3)}_{\zeta}(k_{1},k_{2},k_{3})italic_B start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) defined by Eq. (3.29), but with the three-point function replaced by the lowest order contribution in Eq. (3.35). We then use Eq. (3.9) to get

65fNL=65fNL(3)65fNL(4)65subscript𝑓NL65subscriptsuperscript𝑓3NL65subscriptsuperscript𝑓4NL-\frac{6}{5}f_{\rm NL}=-\frac{6}{5}f^{(3)}_{\rm NL}-\frac{6}{5}f^{(4)}_{\rm NL}- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = - divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT - divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT (3.40)

with

65fNL(4)=NaNbNcd[Pϕac(k1)Pϕbd(k2)+(k cyclic perms)]NeNfNgNh[Pϕef(k1)Pϕgh(k2)+(k cyclic perms)]=defNaNbNcdKabcd(k1,k2,k3)NeNfNgNhKefgh(k1,k2,k3),65subscriptsuperscript𝑓4NLsubscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑delimited-[]superscriptsubscript𝑃italic-ϕabsent𝑎𝑐subscript𝑘1superscriptsubscript𝑃italic-ϕabsent𝑏𝑑subscript𝑘2𝑘 cyclic permssubscript𝑁𝑒subscript𝑁𝑓subscript𝑁𝑔subscript𝑁delimited-[]superscriptsubscript𝑃italic-ϕabsent𝑒𝑓subscript𝑘1superscriptsubscript𝑃italic-ϕabsent𝑔subscript𝑘2𝑘 cyclic permssuperscriptdefsubscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3subscript𝑁𝑒subscript𝑁𝑓subscript𝑁𝑔subscript𝑁superscript𝐾𝑒𝑓𝑔subscript𝑘1subscript𝑘2subscript𝑘3-\frac{6}{5}f^{(4)}_{\rm NL}=\frac{N_{a}N_{b}N_{cd}\left[P_{\phi}^{*ac}\left(k% _{1}\right)P_{\phi}^{*bd}\left(k_{2}\right)+(\vec{k}{\rm\text{ cyclic perms}})% \right]}{N_{e}N_{f}N_{g}N_{h}\left[P_{\phi}^{*ef}(k_{1})P_{\phi}^{*gh}(k_{2})+% (\vec{k}{\rm\text{ cyclic perms}})\right]}\stackrel{{\scriptstyle\rm def}}{{=}% }\frac{N_{a}N_{b}N_{cd}K^{abcd}(k_{1},k_{2},k_{3})}{N_{e}N_{f}N_{g}N_{h}K^{% efgh}(k_{1},k_{2},k_{3})}~{},- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = divide start_ARG italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT [ italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_c end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_b italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ] end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT [ italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_e italic_f end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_g italic_h end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ] end_ARG start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG roman_def end_ARG end_RELOP divide start_ARG italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_e italic_f italic_g italic_h end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_ARG , (3.41)

where we defined

Kabcd(k1,k2,k3)=Pϕac(k1)Pϕbd(k2)+(k cyclic perms),superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3superscriptsubscript𝑃italic-ϕabsent𝑎𝑐subscript𝑘1superscriptsubscript𝑃italic-ϕabsent𝑏𝑑subscript𝑘2𝑘 cyclic permsK^{abcd}(k_{1},k_{2},k_{3})=P_{\phi}^{*ac}(k_{1})P_{\phi}^{*bd}(k_{2})+(\vec{k% }{\rm\text{ cyclic perms}}),italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_a italic_c end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ italic_b italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) , (3.42)

and fNL(3)subscriptsuperscript𝑓3NLf^{(3)}_{\rm NL}italic_f start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT is given by Eq. (3.34), but with Bζ(3)(k1,k2,k3)subscriptsuperscript𝐵3𝜁subscript𝑘1subscript𝑘2subscript𝑘3B^{(3)}_{\zeta}(k_{1},k_{2},k_{3})italic_B start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) instead of Bζ(k1,k2,k3)subscript𝐵𝜁subscript𝑘1subscript𝑘2subscript𝑘3B_{\zeta}(k_{1},k_{2},k_{3})italic_B start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ).

Note that the quantity Kabcd(k1,k2,k3)superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3K^{abcd}(k_{1},k_{2},k_{3})italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) defined in Eq. (3.42) only depends on the two-point functions of field perturbations at the time of horizon crossing tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. We can consider these quantities as initial conditions to the subsequent evolution with all modes outside of the horizon. These quantities can be calculated numerically by tracking the evolution of modes inside the horizon and during horizon exit, and in some cases it is possible to determine Kabcd(k1,k2,k3)superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3K^{abcd}(k_{1},k_{2},k_{3})italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) analytically. The clearest example of that is for the case of two light non-interacting fields. In that case, Pϕab(k)=Pϕ(k)Gabsubscriptsuperscript𝑃absent𝑎𝑏italic-ϕ𝑘superscriptsubscript𝑃italic-ϕ𝑘superscript𝐺𝑎𝑏P^{*ab}_{\phi}(k)=P_{\phi}^{*}(k)G^{ab}italic_P start_POSTSUPERSCRIPT ∗ italic_a italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k ) italic_G start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT with the two-point function of massless scalar fields Pϕ(k)=H2/2k3superscriptsubscript𝑃italic-ϕ𝑘subscriptsuperscript𝐻22superscript𝑘3P_{\phi}^{*}(k)=H^{2}_{*}/2k^{3}italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k ) = italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / 2 italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and one gets

Kabcd(k1,k2,k3)=GacGbd(Pϕ(k1)Pϕ(k2)+(k cyclic perms))65fNL(4)=NaNbNab(NcNc)2,superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3superscript𝐺𝑎𝑐superscript𝐺𝑏𝑑superscriptsubscript𝑃italic-ϕsubscript𝑘1superscriptsubscript𝑃italic-ϕsubscript𝑘2𝑘 cyclic perms65superscriptsubscript𝑓NL4subscript𝑁𝑎subscript𝑁𝑏superscript𝑁𝑎𝑏superscriptsubscript𝑁𝑐superscript𝑁𝑐2K^{abcd}(k_{1},k_{2},k_{3})=G^{ac}G^{bd}\left(P_{\phi}^{*}(k_{1})P_{\phi}^{*}(% k_{2})+(\vec{k}{\rm\text{ cyclic perms}})\right)~{}\Rightarrow~{}-\frac{6}{5}f% _{\rm NL}^{(4)}=\frac{N_{a}N_{b}N^{ab}}{(N_{c}N^{c})^{2}}~{},italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = italic_G start_POSTSUPERSCRIPT italic_a italic_c end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT italic_b italic_d end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ) ⇒ - divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT = divide start_ARG italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_N start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (3.43)

which is an expression for the parameter fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT that is widely used in the literature.

The expression in Eq. (3.41), however, being more general, can account for cases in which the fields have arbitrary masses and non-trivial interactions during horizon crossing, which is not captured by the simple expression in Eq. (3.43). Indeed, it follows the non-Gaussianity parameter in Eq. (3.41) is in general depends on the shape of the triangle (k1,k2,k3)subscript𝑘1subscript𝑘2subscript𝑘3(\vec{k}_{1},\vec{k}_{2},\vec{k}_{3})( over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) and acquires a scale dependence. We will discuss some of these aspects in the following sections.

Mor intuitively, the quantity Kabcd(k1,k2,k3)superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3K^{abcd}(k_{1},k_{2},k_{3})italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) can be written in the kinematical basis. Using the relations in Eq. (3.10), one may find

K(k1,k2,k3)\displaystyle K^{\parallel\parallel\parallel\parallel}(k_{1},k_{2},k_{3})italic_K start_POSTSUPERSCRIPT ∥ ∥ ∥ ∥ end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) =(2ϵ)2(P(k1)P(k2)+(k cyclic perms)),absentsuperscript2subscriptitalic-ϵ2subscript𝑃subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic perms\displaystyle=(2\epsilon_{*})^{2}\left(P_{\cal R*}(k_{1})P_{\cal R*}(k_{2})+(% \vec{k}{\rm\text{ cyclic perms}})\right),= ( 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ) , (3.44)
K(k1,k2,k3)\displaystyle K^{\parallel\parallel\parallel\perp}(k_{1},k_{2},k_{3})italic_K start_POSTSUPERSCRIPT ∥ ∥ ∥ ⟂ end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) =(2ϵ)2(P(k1)C𝒮(k2)+(k cyclic perms)),absentsuperscript2subscriptitalic-ϵ2subscript𝑃subscript𝑘1subscript𝐶𝒮subscript𝑘2𝑘 cyclic perms\displaystyle=(2\epsilon_{*})^{2}\left(P_{\cal R*}(k_{1})C_{\cal RS*}(k_{2})+(% \vec{k}{\rm\text{ cyclic perms}})\right),= ( 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ) ,

and so on.

3.4 Non-Gaussianity via power spectrum at horizon crossing

The non-Gaussianity parameter in its general form, as presented in (3.41), is somewhat implicit. To gain further insight into the new contributions, let us analyze it in detail. Our goal is to express Eq. (3.41) in terms of background quantities, correlators at horizon crossing and transfer functions in order to obtain an analytical understanding of this equation and non-Gaussianity generation in rapid-turn attractor models.

If the expression for the number of e-folds N(ϕa)𝑁superscriptitalic-ϕ𝑎N(\phi^{a})italic_N ( italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ) is known in terms of background quantities, one may explicitly insert the known expressions for Nasubscript𝑁𝑎N_{a}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and Nabsubscript𝑁𝑎𝑏N_{ab}italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT into (3.41) and find the value of fNL(4)superscriptsubscript𝑓NL4f_{\rm NL}^{(4)}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT. In the absence of such explicit expression, it is convenient to use the equations relating Nasubscript𝑁𝑎N_{a}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and Nabsubscript𝑁𝑎𝑏N_{ab}italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT to the transfer function T𝒮subscript𝑇𝒮T_{\mathcal{RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT obtained in Eqs. (3.20) and (3.25), respectively. These can be used, along with Eqs. (3.26) and (3.27) to find an expression for the non-Gaussianity parameter in Eq. (3.41). We find the result to be rather cumbersome and full expressions are shown in Appendix  B, Eq. (B.1). Here we show it in the schematic form

NaNbNcdKabcd(k1,k2,k3)subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3\displaystyle N_{a}N_{b}N_{cd}K^{abcd}(k_{1},k_{2},k_{3})italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) =a1𝒫(k1)𝒫(k2)+a2𝒫𝒮(k1)𝒫𝒮(k2)+a3𝒞𝒮(k1)𝒞𝒮(k2)absentsubscript𝑎1subscript𝒫subscriptsubscript𝑘1subscript𝒫subscriptsubscript𝑘2subscript𝑎2subscript𝒫subscript𝒮subscript𝑘1subscript𝒫subscript𝒮subscript𝑘2subscript𝑎3subscript𝒞subscript𝒮subscript𝑘1subscript𝒞subscript𝒮subscript𝑘2\displaystyle=a_{1}\,{\cal P}_{{\cal R}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{% 2})+a_{2}\,{\cal P}_{{\cal S}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{2})+a_{3}% \,{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_{2})= italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) (3.45)
+a4𝒫(k1)𝒫𝒮(k2)+a5𝒫𝒮(k1)𝒫(k2)+a6𝒞𝒮(k1)𝒫(k2)subscript𝑎4subscript𝒫subscriptsubscript𝑘1subscript𝒫subscript𝒮subscript𝑘2subscript𝑎5subscript𝒫subscript𝒮subscript𝑘1subscript𝒫subscriptsubscript𝑘2subscript𝑎6subscript𝒞subscript𝒮subscript𝑘1subscript𝒫subscriptsubscript𝑘2\displaystyle+a_{4}\,{\cal P}_{{\cal R}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{% 2})+a_{5}\,{\cal P}_{{\cal S}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{2})+a_{6}% \,{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{2})+ italic_a start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )
+a7𝒫(k1)𝒞𝒮(k2)+a8𝒞𝒮(k1)𝒫𝒮(k2)+a9𝒫𝒮(k1)𝒞𝒮(k2)subscript𝑎7subscript𝒫subscriptsubscript𝑘1subscript𝒞subscript𝒮subscript𝑘2subscript𝑎8subscript𝒞subscript𝒮subscript𝑘1subscript𝒫subscript𝒮subscript𝑘2subscript𝑎9subscript𝒫subscript𝒮subscript𝑘1subscript𝒞subscript𝒮subscript𝑘2\displaystyle+a_{7}\,{\cal P}_{{\cal R}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_% {2})+a_{8}\,{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{2})+a_{9% }\,{\cal P}_{{\cal S}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_{2})+ italic_a start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_a start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )
+(k cyclic perms),𝑘 cyclic perms\displaystyle+(\vec{k}{\rm\text{ cyclic perms}}),+ ( over→ start_ARG italic_k end_ARG cyclic perms ) ,

where coefficients aisubscript𝑎𝑖a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are functions of background quantities and T𝒮subscript𝑇𝒮T_{{\cal RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT. Similarly, one can compute the denominator of (3.41) to obtain

NeNfNgNhKefgh(k1,k2,k3)subscript𝑁𝑒subscript𝑁𝑓subscript𝑁𝑔subscript𝑁superscript𝐾𝑒𝑓𝑔subscript𝑘1subscript𝑘2subscript𝑘3\displaystyle N_{e}N_{f}N_{g}N_{h}K^{efgh}(k_{1},k_{2},k_{3})italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_e italic_f italic_g italic_h end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) =\displaystyle== (3.46)
(P(k1)+2T𝒮C𝒮(k1)+T𝒮2P𝒮(k1))subscript𝑃subscriptsubscript𝑘12subscript𝑇𝒮subscript𝐶subscript𝒮subscript𝑘1subscriptsuperscript𝑇2𝒮subscript𝑃subscript𝒮subscript𝑘1\displaystyle\left(P_{{\cal R}_{*}}(k_{1})+2T_{{\cal RS}}C_{{\cal RS}_{*}}(k_{% 1})+T^{2}_{{\cal RS}}P_{{\cal S}_{*}}(k_{1})\right)( italic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) (P(k2)+2T𝒮C𝒮(k2)+T𝒮2P𝒮(k2))subscript𝑃subscriptsubscript𝑘22subscript𝑇𝒮subscript𝐶subscript𝒮subscript𝑘2subscriptsuperscript𝑇2𝒮subscript𝑃subscript𝒮subscript𝑘2\displaystyle\left(P_{{\cal R}_{*}}(k_{2})+2T_{{\cal RS}}C_{{\cal RS}_{*}}(k_{% 2})+T^{2}_{{\cal RS}}P_{{\cal S}_{*}}(k_{2})\right)( italic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) )
+(k cyclic perms).𝑘 cyclic perms\displaystyle+(\vec{k}{\rm\text{ cyclic perms}}).+ ( over→ start_ARG italic_k end_ARG cyclic perms ) .

The result above can also be obtained using the denominator of the form (3.34) with Psubscript𝑃P_{\mathcal{R}}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT expressed via power spectrum at horizon crossing using (3.17). Clearly, Eq. (3.46) can be written in the same form as (3.45) but with some other coefficients bisubscript𝑏𝑖b_{i}italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT instead of aisubscript𝑎𝑖a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, that however have explicit dependence only on the transfer function T𝒮subscript𝑇𝒮T_{{\cal RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT. After dividing numerator by denominator we see that, in general, the resulting fNLsubscript𝑓NLf_{\rm{NL}}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT is scale dependent.

To make further progress in analysis, we assume a scale-invariant power spectrum of perturbations at horizon crossing. This allows us to set P(k)=P,P𝒮(k)=P𝒮,C𝒮(k)=C𝒮formulae-sequencesubscript𝑃subscript𝑘subscript𝑃subscriptformulae-sequencesubscript𝑃subscript𝒮𝑘subscript𝑃subscript𝒮subscript𝐶subscript𝒮𝑘subscript𝐶subscript𝒮P_{{\cal R}_{*}}(k)=P_{{\cal R}_{*}},\,P_{{\cal S}_{*}}(k)=P_{{\cal S}_{*}},\,% C_{{\cal RS}_{*}}(k)=C_{{\cal RS}_{*}}italic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k ) = italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT, however keeping all power spectra to be distinct from each other, i.e. PP𝒮C𝒮subscript𝑃subscriptsubscript𝑃subscript𝒮subscript𝐶subscript𝒮P_{{\cal R}_{*}}\neq P_{{\cal S}_{*}}\neq C_{{\cal RS}_{*}}italic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≠ italic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≠ italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Note that ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT dependence remains present via the horizon crossing time tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and the relation k=a(t)H(t)subscript𝑘𝑎subscript𝑡𝐻subscript𝑡k_{*}=a(t_{*})H(t_{*})italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_a ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_H ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ). It is worth pointing out that in the derivation of commonly used δN𝛿𝑁\delta Nitalic_δ italic_N formula (3.43) it is implicitly assumed that the horizon crossing time of wavenumbers k1,k2,k3subscript𝑘1subscript𝑘2subscript𝑘3k_{1},k_{2},k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is identified with a single time tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. This corresponds to a near-equilateral momentum regime with k1k2k3subscript𝑘1subscript𝑘2subscript𝑘3k_{1}\approx k_{2}\approx k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. A mild hierarchy between the scales |logk1/k3|𝒪(1)similar-tosubscript𝑘1subscript𝑘3𝒪1|\log k_{1}/k_{3}|\sim{\cal O}(1)| roman_log italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | ∼ caligraphic_O ( 1 ) was considered in [88, 89], which is sometimes referred as the mild squeezing regime. In this case the scale dependence of fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT was shown to be first order in slow-roll [88]. In order to account for a highly squeezed momentum configuration k1k2k3much-less-thansubscript𝑘1subscript𝑘2subscript𝑘3k_{1}\ll k_{2}\approx k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≪ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT one needs to take into account very different horizon exit times t1t2t3much-less-thansubscript𝑡1subscript𝑡2subscript𝑡3t_{1}\ll t_{2}\approx t_{3}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≪ italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_t start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. In [90] this was discussed in detail and δN𝛿𝑁\delta Nitalic_δ italic_N expressions were extended in order to allow for multiple horizon crossing times. It was found that for some models there is a correction at a level of 20% in the highly squeezed limit compared to expressions in the mildly squeezed limit. As a first step, in our computation we adopt the assumption of single horizon crossing time tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and leave extensive investigation of scale and shape dependence for forthcoming work.

It is convenient to introduce parameters that encode relative magnitudes of power spectra. Let us define the ratios of isocurvature to curvature perturbations α\alpha{{}_{*}}italic_α start_FLOATSUBSCRIPT ∗ end_FLOATSUBSCRIPT and the cross-correlation ratio βsubscript𝛽\beta_{*}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT at horizon crossing as

α𝒫𝒮𝒫,β𝒞𝒮𝒫𝒫𝒮.\alpha{{}_{*}}\equiv\frac{{\cal P}_{{\cal S}_{*}}}{{\cal P}_{{\cal R}_{*}}},% \quad\beta_{*}\equiv\frac{{\cal C}_{{\cal RS}_{*}}}{\sqrt{{\cal P}_{{\cal R}_{% *}}{\cal P}_{{\cal S}_{*}}}}.italic_α start_FLOATSUBSCRIPT ∗ end_FLOATSUBSCRIPT ≡ divide start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG , italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≡ divide start_ARG caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG end_ARG . (3.47)

where the cross-correlation ratio is defined similarly as in [91]. Now, after dividing (B.1) by (3.46) with a scale-invariant assumption for power spectra and expressing it in terms of α\alpha{{}_{*}}italic_α start_FLOATSUBSCRIPT ∗ end_FLOATSUBSCRIPT and βsubscript𝛽\beta_{*}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT via (3.47), we obtain the following result

65fNL(4)=2ϵ(1+2βαT𝒮+αT𝒮2)2[(T𝒮)(βα+αT𝒮)(1+βαT𝒮)\displaystyle-\frac{6}{5}f^{(4)}_{\rm NL}=\frac{\sqrt{2\epsilon_{*}}}{(1+2% \beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{*}T_{\cal RS}^{2})^{2}}\left[(% \nabla T_{\cal RS})_{\parallel*}(\beta_{*}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{% \cal RS})(1+\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})\right.- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) (3.48)
+(T𝒮)(βα+αT𝒮)2subscriptsubscript𝑇𝒮perpendicular-toabsentsuperscriptsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮2\displaystyle\left.\,+(\nabla T_{\cal RS})_{\perp*}(\beta_{*}\sqrt{\alpha_{*}}% \,+\alpha_{*}T_{\cal RS})^{2}\right.+ ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
(ϵ)2ϵ(1+βαT𝒮)(1+2βαT𝒮+αT𝒮2)\displaystyle\left.\,-\frac{(\nabla\epsilon)_{\parallel*}}{2\epsilon_{*}}(1+% \beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})(1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{% \cal RS}+\alpha_{*}T_{\cal RS}^{2})\right.- divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )
(ϵ)2ϵ(βα+αT𝒮)(1+2βαT𝒮+αT𝒮2)subscriptitalic-ϵperpendicular-toabsent2subscriptitalic-ϵsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮2\displaystyle\left.\,-\frac{(\nabla\epsilon)_{\perp*}}{2\epsilon_{*}}(\beta_{*% }\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})(1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{% \cal RS}+\alpha_{*}T_{\cal RS}^{2})\right.- divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )
.(βα+T𝒮(1α+βαT𝒮))(θ(1+βαT𝒮)+θ(βα+αT𝒮))].\displaystyle\biggl{.}\,-\left(-\beta_{*}\sqrt{\alpha_{*}}\,+T_{\cal RS}(1-% \alpha_{*}+\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})\right)\left(\theta_{% \parallel*}(1+\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})+\theta_{\perp*}(\beta_{% *}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})\right)\biggr{]}.. - ( - italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( 1 - italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ) ( italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) + italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ) ] .

To make the final formula more intuitive, let us separate the power spectrum quantities from background ones and combine terms that are proportional to the turn-rate, speed up rate and components of background mass matrix. In order to do that, we use (2.18) and (3.28) and obtain the final expression for fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT in the form

65fNL(4)=2ϵ(T𝒮)I1+2ϵ(T𝒮)I2η2ϵI3η2ϵI4\displaystyle-\frac{6}{5}f^{(4)}_{\rm NL}=\sqrt{2\epsilon_{*}}(\nabla T_{\cal RS% })_{\parallel*}I_{1*}+\sqrt{2\epsilon_{*}}(\nabla T_{\cal RS})_{\perp*}I_{2*}-% \frac{\eta_{\parallel*}}{\sqrt{2\epsilon_{*}}}I_{3*}-\frac{\eta_{\perp*}}{% \sqrt{2\epsilon}}I_{4*}- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 ∗ end_POSTSUBSCRIPT + square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT - divide start_ARG italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG italic_I start_POSTSUBSCRIPT 3 ∗ end_POSTSUBSCRIPT - divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT (3.49)
+(M~+2ϵ(3ϵ)2(ηM~ηM~))I5+M~I6.\displaystyle+\left(\tilde{M}_{\perp\perp*}+\frac{\sqrt{2\epsilon_{*}}}{(3-% \epsilon_{*})^{2}}\left(\eta_{\parallel*}\tilde{M}_{\perp\perp*}-\eta_{\perp*}% \tilde{M}_{\perp\parallel*}\right)\right)I_{5*}+\tilde{M}_{\perp\parallel*}I_{% 6*}.+ ( over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT + divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG ( 3 - italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT - italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT ) ) italic_I start_POSTSUBSCRIPT 5 ∗ end_POSTSUBSCRIPT + over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT .

Please, note that the formula is exact and does not rely on the slow-roll approximation. The coefficients Iisubscript𝐼𝑖I_{i}italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT depend on time through T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT and are given by

I1subscript𝐼1\displaystyle I_{1*}italic_I start_POSTSUBSCRIPT 1 ∗ end_POSTSUBSCRIPT =(βα+αT𝒮)(1+βαT𝒮)(1+2βαT𝒮+αT𝒮2)2,absentsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮1subscript𝛽subscript𝛼subscript𝑇𝒮superscript12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮22\displaystyle=\frac{(\beta_{*}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})(1+% \beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})}{(1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{% \cal RS}+\alpha_{*}T_{\cal RS}^{2})^{2}},= divide start_ARG ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (3.50)
I2subscript𝐼2\displaystyle I_{2*}italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT =(βα+αT𝒮)2(1+2βαT𝒮+αT𝒮2)2,absentsuperscriptsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮2superscript12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮22\displaystyle=\frac{(\beta_{*}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})^{2}}{% (1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{*}T_{\cal RS}^{2})^{2}},= divide start_ARG ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,
I3subscript𝐼3\displaystyle I_{3*}italic_I start_POSTSUBSCRIPT 3 ∗ end_POSTSUBSCRIPT =(1+βαT𝒮)(1+2βαT𝒮+αT𝒮2),absent1subscript𝛽subscript𝛼subscript𝑇𝒮12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮2\displaystyle=\frac{(1+\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})}{(1+2\beta_{*}% \sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{*}T_{\cal RS}^{2})},= divide start_ARG ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG ,
I4subscript𝐼4\displaystyle I_{4*}italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT =(1+βαT𝒮)(βα+T𝒮(1α+βαT𝒮))(1+2βαT𝒮+αT𝒮2)2,absent1subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛽subscript𝛼subscript𝑇𝒮1subscript𝛼subscript𝛽subscript𝛼subscript𝑇𝒮superscript12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮22\displaystyle=\frac{(1+\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS})\left(-\beta_{*% }\sqrt{\alpha_{*}}\,+T_{\cal RS}(1-\alpha_{*}+\beta_{*}\sqrt{\alpha_{*}}\,T_{% \cal RS})\right)}{(1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{*}T_{% \cal RS}^{2})^{2}},= divide start_ARG ( 1 + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( - italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( 1 - italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ) end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,
I5subscript𝐼5\displaystyle I_{5*}italic_I start_POSTSUBSCRIPT 5 ∗ end_POSTSUBSCRIPT =(βα+αT𝒮)(βα+T𝒮(1α+βαT𝒮))(1+2βαT𝒮+αT𝒮2)2,absentsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮subscript𝛽subscript𝛼subscript𝑇𝒮1subscript𝛼subscript𝛽subscript𝛼subscript𝑇𝒮superscript12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮22\displaystyle=\frac{(\beta_{*}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})\left(% -\beta_{*}\sqrt{\alpha_{*}}\,+T_{\cal RS}(1-\alpha_{*}+\beta_{*}\sqrt{\alpha_{% *}}\,T_{\cal RS})\right)}{(1+2\beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{% *}T_{\cal RS}^{2})^{2}},= divide start_ARG ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( - italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( 1 - italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ) end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,
I6subscript𝐼6\displaystyle I_{6*}italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT =(βα+αT𝒮)(1+2βαT𝒮+αT𝒮2).absentsubscript𝛽subscript𝛼subscript𝛼subscript𝑇𝒮12subscript𝛽subscript𝛼subscript𝑇𝒮subscript𝛼superscriptsubscript𝑇𝒮2\displaystyle=\frac{(\beta_{*}\sqrt{\alpha_{*}}\,+\alpha_{*}T_{\cal RS})}{(1+2% \beta_{*}\sqrt{\alpha_{*}}\,T_{\cal RS}+\alpha_{*}T_{\cal RS}^{2})}.= divide start_ARG ( italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) end_ARG start_ARG ( 1 + 2 italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG .
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: 3D plots for the coefficients Iisubscript𝐼𝑖I_{i*}italic_I start_POSTSUBSCRIPT italic_i ∗ end_POSTSUBSCRIPT at horizon crossing and their dependence on α=P𝒮/Psubscript𝛼subscript𝑃𝒮subscript𝑃\alpha_{*}=P_{\cal S*}/P_{\cal R*}italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT / italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT and β=C𝒮/PP𝒮subscript𝛽subscript𝐶𝒮subscript𝑃subscript𝑃𝒮\beta_{*}=C_{\cal RS*}/\sqrt{P_{\cal R*}P_{\cal S*}}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT / square-root start_ARG italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT end_ARG for T𝒮=0.01,0.5,1subscript𝑇𝒮0.010.51T_{\cal RS}=0.01\,,0.5\,,1italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT = 0.01 , 0.5 , 1 (brown, blue and green surfaces respectively).

On Figure 1 we show the dependence of coefficients Iisubscript𝐼𝑖I_{i}italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT on αsubscript𝛼\alpha_{*}italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and βsubscript𝛽\beta_{*}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT for different values of the transfer function T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT. All coefficients Iisubscript𝐼𝑖I_{i*}italic_I start_POSTSUBSCRIPT italic_i ∗ end_POSTSUBSCRIPT are bounded to be less than unity, except of the coefficient I4subscript𝐼4I_{4*}italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT. For larger values of T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT, small αsubscript𝛼\alpha_{*}italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and any value of βsubscript𝛽\beta_{*}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT it becomes larger than unity and can provide a significant contribution to (3.49).

3.5 Comparison with SRST approximation

Let us now compare our result of the non-Gaussianity parameter with the one obtained in SRST approximation in [52]. In order to do that, we set 𝒞𝒮=0,𝒫=𝒫𝒮formulae-sequencesubscript𝒞subscript𝒮0subscript𝒫subscriptsubscript𝒫subscript𝒮{\cal C}_{{\cal RS}_{*}}=0,\,{\cal P}_{{\cal R}_{*}}={\cal P}_{{\cal S}_{*}}caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 0 , caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT as in [52]. This implies α=1\alpha{{}_{*}}=1italic_α start_FLOATSUBSCRIPT ∗ end_FLOATSUBSCRIPT = 1 and β=0subscript𝛽0\beta_{*}=0italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0 and we find the coefficients (3.50) reduce to

I1subscript𝐼1\displaystyle I_{1*}italic_I start_POSTSUBSCRIPT 1 ∗ end_POSTSUBSCRIPT =T𝒮(1+T𝒮2)2,I3absentsubscript𝑇𝒮superscript1superscriptsubscript𝑇𝒮22subscript𝐼3\displaystyle=\frac{T_{\cal RS}}{(1+T_{\cal RS}^{2})^{2}},\quad I_{3*}= divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_I start_POSTSUBSCRIPT 3 ∗ end_POSTSUBSCRIPT =1(1+T𝒮2),I4absent11superscriptsubscript𝑇𝒮2subscript𝐼4\displaystyle=\frac{1}{(1+T_{\cal RS}^{2})},\quad I_{4*}= divide start_ARG 1 end_ARG start_ARG ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG , italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT =0,absent0\displaystyle=0,= 0 , (3.51)
I2subscript𝐼2\displaystyle I_{2*}italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT =T𝒮2(1+T𝒮2)2,I6absentsuperscriptsubscript𝑇𝒮2superscript1superscriptsubscript𝑇𝒮22subscript𝐼6\displaystyle=\frac{T_{\cal RS}^{2}}{(1+T_{\cal RS}^{2})^{2}},\quad I_{6*}= divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT =T𝒮(1+T𝒮2),I5absentsubscript𝑇𝒮1superscriptsubscript𝑇𝒮2subscript𝐼5\displaystyle=\frac{T_{\cal RS}}{(1+T_{\cal RS}^{2})},\quad I_{5*}= divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG , italic_I start_POSTSUBSCRIPT 5 ∗ end_POSTSUBSCRIPT =0.absent0\displaystyle=0.= 0 . (3.52)

Next, we plug them into (3.49) and get

65fNL(4),SRST=2ϵ[cosΔN2((ϵ)2ϵ+sinΔNcosΔN(T𝒮))+sinΔNcosΔN((ϵ)2ϵ+sinΔNcosΔN(T𝒮))],\displaystyle\begin{split}-\frac{6}{5}f_{\rm NL}^{(4),\,\rm SRST}=~{}\sqrt{2% \epsilon_{*}}\biggr{[}&\cos\Delta_{N}^{2}\left(-\frac{(\nabla\epsilon)_{% \parallel*}}{2\epsilon_{*}}+\sin\Delta_{N}\cos\Delta_{N}(\nabla T_{\cal RS})_{% \parallel*}\right)\\ &+\sin\Delta_{N}\cos\Delta_{N}\left(-\frac{(\nabla\epsilon)_{\perp*}}{2% \epsilon_{*}}+\sin\Delta_{N}\cos\Delta_{N}(\nabla T_{\cal RS})_{\perp*}\right)% \biggr{]},\end{split}start_ROW start_CELL - divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) , roman_SRST end_POSTSUPERSCRIPT = square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG [ end_CELL start_CELL roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ) ] , end_CELL end_ROW (3.53)

where we used equations (2.18), (2.17) and the definition of the correlation angle (3.23) to re-express cosΔN=11+T𝒮2subscriptΔ𝑁11superscriptsubscript𝑇𝒮2\cos\Delta_{N}=\frac{1}{\sqrt{1+T_{\cal RS}^{2}}}roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG and sinΔN=T𝒮1+T𝒮2subscriptΔ𝑁subscript𝑇𝒮1superscriptsubscript𝑇𝒮2\sin\Delta_{N}=\frac{T_{\cal RS}}{\sqrt{1+T_{\cal RS}^{2}}}roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = divide start_ARG italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG. We see that this result is exactly of the same form as the one obtained in [52]. An implicit difference is, however, contained in the term (ϵ)/2ϵ=M~(\nabla\epsilon)_{\perp*}/\sqrt{2\epsilon_{*}}=-\tilde{M}_{\perp\parallel*}( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG = - over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT. In the case of the SRST approximation, one has M~=M=Mη/2ϵ1\tilde{M}_{\perp\parallel*}=M_{\perp\parallel*}=M_{\parallel\perp*}\approx-% \eta_{\perp*}/\sqrt{2\epsilon_{*}}\ll 1over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT ∥ ⟂ ∗ end_POSTSUBSCRIPT ≈ - italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ≪ 1, making this contribution negligible if one looks for 𝒪(1)𝒪1\mathcal{O}(1)caligraphic_O ( 1 ) non-Gaussianity. On the other hand, for rapid-turn models, the matrix component M~\tilde{M}_{\perp\parallel*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT can be significant and potentially generate large non-Gaussianity. As pointed out in [52], the term containing (T𝒮)subscriptsubscript𝑇𝒮perpendicular-toabsent(\nabla T_{\cal RS})_{\perp*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT can also lead to large non-Gaussianities, in particular when the sourcing of curvature perturbations from isocurvature perturbations is highly sensitive to initial conditions of the inflationary trajectory. This term can be expressed via background quantities and transfer functions in some analytically solvable models as was shown in [52].

In the single-field (SF) limit T𝒮=0subscript𝑇𝒮0T_{\cal RS}=0italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT = 0 and M=0M_{\perp\parallel*}=0italic_M start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT = 0 and the second parenthesis in (3.53) is identically zero. Only the first term with quantities that are parallel to the field trajectory is non-zero. In [52] it was shown that it is equal to

65fNL(4),SF=12(ns1nt),65superscriptsubscript𝑓NL4SF12subscript𝑛𝑠1subscript𝑛𝑡-\frac{6}{5}f_{\rm NL}^{(4),\,\rm SF}=\frac{1}{2}\left(n_{s}-1-n_{t}\right),- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) , roman_SF end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 1 - italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) , (3.54)

where nssubscript𝑛𝑠n_{s}italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is the scalar spectral index and ntsubscript𝑛𝑡n_{t}italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the tensor tilt. The single-field consistency relation has contributions from both fNL(3),SFsuperscriptsubscript𝑓NL3SFf_{\rm NL}^{(3),\,\rm SF}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) , roman_SF end_POSTSUPERSCRIPT and fNL(4),SFsuperscriptsubscript𝑓NL4SFf_{\rm NL}^{(4),\,\rm SF}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) , roman_SF end_POSTSUPERSCRIPT. Taking into account fNL(3),SFsuperscriptsubscript𝑓NL3SFf_{\rm NL}^{(3),\,\rm SF}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 3 ) , roman_SF end_POSTSUPERSCRIPT, one gets [53]

65fNLSF=12(ns1).65superscriptsubscript𝑓NLSF12subscript𝑛𝑠1-\frac{6}{5}f_{\rm NL}^{\rm SF}=\frac{1}{2}\left(n_{s}-1\right).- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_SF end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 1 ) . (3.55)

which coincides with the Maldacena single-field consistency condition [3].

3.6 Non-Gaussianity via power spectrum after horizon crossing

In this section we will follow the same steps as in Section 3.4 in order to obtain the non-Gaussianity parameter via the power spectra evaluated at the end of inflation or any other time after horizon crossing. Specifically, we express the power spectra at horizon crossing via the power spectra at later time using (3.17) and, together with Nasubscript𝑁𝑎N_{a}italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and Nabsubscript𝑁𝑎𝑏N_{ab}italic_N start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT from Eqs. (3.20) and (3.25), insert into the general formula (3.41). The resulting numerator is of the form

NaNbNcdKabcd(k1,k2,k3)=subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3absent\displaystyle N_{a}N_{b}N_{cd}K^{abcd}(k_{1},k_{2},k_{3})=italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = (3.56)
c1P(k1)P(k2)+c2C𝒮(k1)C𝒮(k2)+c3P(k1)C𝒮(k2)+c4C𝒮(k1)P(k2)+(k cyclic perms),subscript𝑐1subscript𝑃subscript𝑘1subscript𝑃subscript𝑘2subscript𝑐2subscript𝐶𝒮subscript𝑘1subscript𝐶𝒮subscript𝑘2subscript𝑐3subscript𝑃subscript𝑘1subscript𝐶𝒮subscript𝑘2subscript𝑐4subscript𝐶𝒮subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic perms\displaystyle c_{1}\,P_{\cal{R}}(k_{1})P_{\cal{R}}(k_{2})+c_{2}\,C_{\cal{RS}}(% k_{1})C_{\cal{RS}}(k_{2})+c_{3}\,P_{\cal{R}}(k_{1})C_{\cal{RS}}(k_{2})+c_{4}\,% C_{\cal{RS}}(k_{1})P_{\cal{R}}(k_{2})+(\vec{k}{\rm\text{ cyclic perms}}),italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_c start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) ,

where coefficients cisubscript𝑐𝑖c_{i}italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are functions of background quantities, T𝒮subscript𝑇𝒮T_{{\cal RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT and T𝒮𝒮subscript𝑇𝒮𝒮T_{\cal SS}italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT. One can see that in (3.56) there is no explicit dependence on P𝒮(k)subscript𝑃𝒮𝑘P_{\cal{S}}(k)italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT ( italic_k ), however the presence of isocurvature perturbations is implicitly encoded via T𝒮𝒮subscript𝑇𝒮𝒮T_{\cal SS}italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT as we will see below. The denominator at the end of inflation is given by the definition (3.34) as the permutation

NeNfNgNhKefgh(k1,k2,k3)=P(k1)P(k2)+(k cyclic perms).subscript𝑁𝑒subscript𝑁𝑓subscript𝑁𝑔subscript𝑁superscript𝐾𝑒𝑓𝑔subscript𝑘1subscript𝑘2subscript𝑘3subscript𝑃subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic permsN_{e}N_{f}N_{g}N_{h}K^{efgh}(k_{1},k_{2},k_{3})=P_{\cal R}(k_{1})P_{\cal R}(k_% {2})+(\vec{k}{\rm\text{ cyclic perms}}).italic_N start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_e italic_f italic_g italic_h end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) . (3.57)

Therefore, taking the ratio of (3.56) to (3.57), we find that an overall structure of the non-Gaussianity parameter is of the form

65fNL(4)(k1,k2,k3)=IJfNLIJ𝒫~I(k1)𝒫~J(k2)+(k cyclic perms)P(k1)P(k2)+(k cyclic perms),65superscriptsubscript𝑓NL4subscript𝑘1subscript𝑘2subscript𝑘3subscript𝐼𝐽subscriptsuperscript𝑓𝐼𝐽NLsuperscript~𝒫𝐼subscript𝑘1superscript~𝒫𝐽subscript𝑘2𝑘 cyclic permssubscript𝑃subscript𝑘1subscript𝑃subscript𝑘2𝑘 cyclic perms-\frac{6}{5}f_{\rm NL}^{(4)}(k_{1},k_{2},k_{3})=\sum_{IJ}f^{IJ}_{\rm NL}\frac{% \tilde{{\cal P}}^{I}(k_{1})\tilde{{\cal P}}^{J}(k_{2})+(\vec{k}{\rm\text{ % cyclic perms}})}{P_{\cal R}(k_{1})P_{\cal R}(k_{2})+(\vec{k}{\rm\text{ cyclic % perms}})},- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT italic_I italic_J end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT divide start_ARG over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + ( over→ start_ARG italic_k end_ARG cyclic perms ) end_ARG , (3.58)

with I,J=,𝒞formulae-sequence𝐼𝐽𝒞I,J={\cal R,C}italic_I , italic_J = caligraphic_R , caligraphic_C and 𝒫~(k)=P(k)superscript~𝒫𝑘subscript𝑃𝑘\tilde{{\cal P}}^{{\cal R}}(k)=P_{\mathcal{R}}(k)over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT caligraphic_R end_POSTSUPERSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k ), 𝒫~𝒞(k)=C𝒮(k)superscript~𝒫𝒞𝑘subscript𝐶𝒮𝑘\tilde{{\cal P}}^{{\cal C}}(k)=C_{\mathcal{RS}}(k)over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT caligraphic_C end_POSTSUPERSCRIPT ( italic_k ) = italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k ). From the full expression given in equation (B.2) in Appendix, we find the components fNLIJsubscriptsuperscript𝑓𝐼𝐽NLf^{IJ}_{\rm NL}italic_f start_POSTSUPERSCRIPT italic_I italic_J end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT explicitly as

fNLsubscriptsuperscript𝑓NL\displaystyle f^{{\cal R}{\cal R}}_{\rm NL}italic_f start_POSTSUPERSCRIPT caligraphic_R caligraphic_R end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT =2ϵ[(ϵ)2ϵθT𝒮],\displaystyle=\sqrt{2\epsilon_{*}}\left[-\frac{(\nabla\epsilon)_{\parallel*}}{% 2\epsilon_{*}}-\theta_{\parallel*}T_{{\cal RS}}\right],= square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG [ - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG - italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ] , (3.59)
fNL𝒞𝒞subscriptsuperscript𝑓𝒞𝒞NL\displaystyle f^{{\cal C}{\cal C}}_{\rm NL}italic_f start_POSTSUPERSCRIPT caligraphic_C caligraphic_C end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT =2ϵT𝒮𝒮2[(1+T𝒮2)(θT𝒮θ)+((T𝒮)T𝒮(T𝒮))],\displaystyle=\frac{\sqrt{2\epsilon_{*}}}{T_{\cal SS}^{2}}\left[(1+T_{{\cal RS% }}^{2})(\theta_{\perp*}-T_{{\cal RS}}\theta_{\parallel*})+((\nabla T_{\cal RS}% )_{\perp*}-T_{{\cal RS}}(\nabla T_{\cal RS})_{\parallel*})\right],= divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) + ( ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) ] , (3.60)
fNL𝒞subscriptsuperscript𝑓𝒞NL\displaystyle f^{{\cal R}{\cal C}}_{\rm NL}italic_f start_POSTSUPERSCRIPT caligraphic_R caligraphic_C end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT =2ϵT𝒮𝒮[θ(1+T𝒮2)+(T𝒮)],\displaystyle=\frac{\sqrt{2\epsilon_{*}}}{T_{\cal SS}}\left[\theta_{\parallel*% }(1+T_{{\cal RS}}^{2})+(\nabla T_{\cal RS})_{\parallel*}\right],= divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT end_ARG [ italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ] , (3.61)
fNL𝒞subscriptsuperscript𝑓𝒞NL\displaystyle f^{{\cal C}{\cal R}}_{\rm NL}italic_f start_POSTSUPERSCRIPT caligraphic_C caligraphic_R end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT =2ϵT𝒮𝒮[(ϵ)(ϵ)T𝒮2ϵT𝒮(θθT𝒮)].\displaystyle=\frac{\sqrt{2\epsilon_{*}}}{T_{\cal SS}}\left[-\frac{(\nabla% \epsilon)_{\perp*}-(\nabla\epsilon)_{\parallel*}T_{{\cal RS}}}{2\epsilon}-T_{{% \cal RS}}(\theta_{\perp*}-\theta_{\parallel*}T_{{\cal RS}})\right].= divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT end_ARG [ - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ end_ARG - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ] . (3.62)

One can see that when 𝒫~I(k)superscript~𝒫𝐼𝑘\tilde{{\cal P}}^{I}(k)over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_k ) and 𝒫~J(k)superscript~𝒫𝐽𝑘\tilde{{\cal P}}^{J}(k)over~ start_ARG caligraphic_P end_ARG start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT ( italic_k ) have a distinct scale dependence, the resulting non-Gaussianity parameter in Eq. (3.58) also acquires a scale dependence. In addition, this parameter also depends on the shape functions of the 𝒞𝒞,𝒞,𝒞𝒞𝒞𝒞𝒞{\cal CC},\,{\cal CR},\,{\cal RC}caligraphic_C caligraphic_C , caligraphic_C caligraphic_R , caligraphic_R caligraphic_C contributions. Here only the contribution fNLsubscriptsuperscript𝑓NLf^{{\cal R}{\cal R}}_{\rm NL}italic_f start_POSTSUPERSCRIPT caligraphic_R caligraphic_R end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT is local in the sense described in Section 3.3. Setting the cross-correlation to zero eliminates the scale and shape dependence of the non-Gaussianity parameter and reduces it to the one obtained in SRST approximation.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Coefficients I1,I3,I4,I5subscript𝐼1subscript𝐼3subscript𝐼4subscript𝐼5I_{1},\,I_{3},\,I_{4},\,I_{5}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT and their dependence on the parameter λ𝜆\lambdaitalic_λ for different values of the transfer function at the end of inflation T𝒮=0.01, 0.5, 1, 1.5subscript𝑇𝒮0.010.511.5T_{\cal RS}=0.01,\,0.5,\,1,\,1.5italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT = 0.01 , 0.5 , 1 , 1.5 (brown solid, blue dashed, green dot-dashed and red dotted respectively). Coefficients I2subscript𝐼2I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and I6subscript𝐼6I_{6}italic_I start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT do not depend on T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT and grow quadratically and linearly (respectively) with λ𝜆\lambdaitalic_λ, hence we omit those plots here.

To proceed further, as before, we assume scale-invariant power spectrum of perturbations after horizon crossing, i.e. taking P(k)=P,P𝒮(k)=P𝒮,C𝒮(k)=C𝒮formulae-sequencesubscript𝑃𝑘subscript𝑃formulae-sequencesubscript𝑃𝒮𝑘subscript𝑃𝒮subscript𝐶𝒮𝑘subscript𝐶𝒮P_{{\cal R}}(k)=P_{{\cal R}},\,P_{{\cal S}}(k)=P_{{\cal S}},\,C_{{\cal RS}}(k)% =C_{{\cal RS}}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k ) = italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT, with PP𝒮C𝒮subscript𝑃subscript𝑃𝒮subscript𝐶𝒮P_{{\cal R}}\neq P_{{\cal S}}\neq C_{{\cal RS}}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ≠ italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT ≠ italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT. In this case we find that the resulting non-Gaussianity parameter at any moment of time after horizon crossing may be parameterized similarly as in Section 3.4

65fNL(4)=2ϵ(T𝒮)I1+2ϵ(T𝒮)I2η2ϵI3η2ϵI4\displaystyle-\frac{6}{5}f^{(4)}_{\rm NL}=\sqrt{2\epsilon_{*}}(\nabla T_{\cal RS% })_{\parallel*}I_{1}+\sqrt{2\epsilon_{*}}(\nabla T_{\cal RS})_{\perp*}I_{2}-% \frac{\eta_{\parallel*}}{\sqrt{2\epsilon_{*}}}I_{3}-\frac{\eta_{\perp*}}{\sqrt% {2\epsilon}}I_{4}- divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - divide start_ARG italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT (3.63)
+(M~+2ϵ(3ϵ)2(ηM~ηM~))I5+M~I6,\displaystyle+\left(\tilde{M}_{\perp\perp*}+\frac{\sqrt{2\epsilon_{*}}}{(3-% \epsilon_{*})^{2}}\left(\eta_{\parallel*}\tilde{M}_{\perp\perp*}-\eta_{\perp*}% \tilde{M}_{\perp\parallel*}\right)\right)I_{5}+\tilde{M}_{\perp\parallel*}I_{6},+ ( over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT + divide start_ARG square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG end_ARG start_ARG ( 3 - italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT - italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT ) ) italic_I start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ,

where the coefficients Iisubscript𝐼𝑖I_{i}italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT depend on time via the transfer function T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT and the parameter λ𝜆\lambdaitalic_λ, and can be written in the form

I1subscript𝐼1\displaystyle I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT =λ(1λT𝒮),absent𝜆1𝜆subscript𝑇𝒮\displaystyle=\lambda\left(1-\lambda\,T_{\cal RS}\right),= italic_λ ( 1 - italic_λ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) , (3.64)
I2subscript𝐼2\displaystyle I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =λ2,absentsuperscript𝜆2\displaystyle=\lambda^{2},= italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
I3subscript𝐼3\displaystyle I_{3}italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT =(1λT𝒮),absent1𝜆subscript𝑇𝒮\displaystyle=\left(1-\lambda\,T_{\cal RS}\right),= ( 1 - italic_λ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ,
I4subscript𝐼4\displaystyle I_{4}italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT =(λT𝒮1)(T𝒮+λ(1+T𝒮2)),absent𝜆subscript𝑇𝒮1subscript𝑇𝒮𝜆1superscriptsubscript𝑇𝒮2\displaystyle=\left(\lambda\,T_{\cal RS}-1\right)\left(-T_{\cal RS}+\lambda(1+% T_{\cal RS}^{2})\right),= ( italic_λ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT - 1 ) ( - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT + italic_λ ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) ,
I5subscript𝐼5\displaystyle I_{5}italic_I start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT =λ(T𝒮λ(1+T𝒮2)),absent𝜆subscript𝑇𝒮𝜆1superscriptsubscript𝑇𝒮2\displaystyle=\lambda\left(T_{\cal RS}-\lambda\left(1+T_{\cal RS}^{2}\right)% \right),= italic_λ ( italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT - italic_λ ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) ,
I6subscript𝐼6\displaystyle I_{6}italic_I start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT =λ,absent𝜆\displaystyle=\lambda,= italic_λ ,

with

λ𝒞𝒮𝒫𝒫𝒮𝒫𝒮𝒫.𝜆subscript𝒞𝒮subscript𝒫subscript𝒫𝒮subscript𝒫subscript𝒮subscript𝒫\lambda\equiv\frac{{\cal C}_{{\cal RS}}}{\sqrt{{\cal P}_{{\cal R}}{\cal P}_{{% \cal S}}}}\sqrt{\frac{{\cal P}_{{\cal S_{*}}}}{{\cal P}_{{\cal R}}}}.italic_λ ≡ divide start_ARG caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT end_ARG end_ARG square-root start_ARG divide start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT end_ARG end_ARG . (3.65)

We show the dependence of Iisubscript𝐼𝑖I_{i}italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT coefficients on the parameter λ𝜆\lambdaitalic_λ on Figure 2. One can see that for vanishing cross-correlation the coefficients I1,I2,I5,I6subscript𝐼1subscript𝐼2subscript𝐼5subscript𝐼6I_{1},I_{2},I_{5},I_{6}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT are zero for all values of the transfer function T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT. Interestingly, contributions from I3subscript𝐼3I_{3}italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and I4subscript𝐼4I_{4}italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT may be non-zero even for zero cross correlation. It is worth noting that the coefficients (3.64) coincide with the coefficients (3.50) when P,C𝒮,P𝒮subscript𝑃subscript𝐶𝒮subscript𝑃𝒮P_{\mathcal{R}},C_{\mathcal{RS}},P_{\mathcal{S}}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT are re-expressed via P,C𝒮,P𝒮superscriptsubscript𝑃superscriptsubscript𝐶𝒮superscriptsubscript𝑃𝒮P_{\mathcal{R}}^{*},C_{\mathcal{RS}}^{*},P_{\mathcal{S}}^{*}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT using (3.17), and vice versa. In general, relation (3.63) gives the value of the non-Gaussianity parameter fNL(4)subscriptsuperscript𝑓4NLf^{(4)}_{\rm NL}italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT at any moment of time after horizon crossing.

4 Example

In this section we are going to demonstrate how our general formula works in one example of a rapid-turn model of inflation. To show the full power of our result we consider a model with non-zero cross-correlation power spectrum either at horizon crossing or at the end of inflation as well as with a sustained rapidly-turning trajectory. ‘Angular inflation’, introduced in [58], provides a simple example. It describes a dynamical attractor along the boundary of the Poincare disc and supports a sustainable rapid-turn regime of inflation as we show below. Angular inflation has an action of the form (2.1) with the field-space metric given by

Gab=6α~(1ϕ2χ2)2δab,subscript𝐺𝑎𝑏6~𝛼superscript1superscriptitalic-ϕ2superscript𝜒22subscript𝛿𝑎𝑏G_{ab}=\frac{6\tilde{\alpha}}{\left(1-\phi^{2}-\chi^{2}\right)^{2}}\delta_{ab},italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT = divide start_ARG 6 over~ start_ARG italic_α end_ARG end_ARG start_ARG ( 1 - italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_δ start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT , (4.1)

where α~~𝛼\tilde{\alpha}over~ start_ARG italic_α end_ARG is the curvature parameter888In the original paper [58] for α~~𝛼\tilde{\alpha}over~ start_ARG italic_α end_ARG is used letter α𝛼\alphaitalic_α. We use tilde to avoid confusion with the ratio of isocurvature to curvature power spectrum which we define with α𝛼\alphaitalic_α.. The potential is given by

V(ϕ,χ)=α~2(mϕ2ϕ2+mχ2χ2).𝑉italic-ϕ𝜒~𝛼2superscriptsubscript𝑚italic-ϕ2superscriptitalic-ϕ2superscriptsubscript𝑚𝜒2superscript𝜒2V(\phi,\chi)=\frac{\tilde{\alpha}}{2}\left(m_{\phi}^{2}\phi^{2}+m_{\chi}^{2}% \chi^{2}\right).italic_V ( italic_ϕ , italic_χ ) = divide start_ARG over~ start_ARG italic_α end_ARG end_ARG start_ARG 2 end_ARG ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_m start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) . (4.2)

In a flat limit α~~𝛼\tilde{\alpha}\rightarrow\inftyover~ start_ARG italic_α end_ARG → ∞ recovers usual quadratic potential when fields are properly rescaled. In terms of polar coordinates, the fields may be written as ϕ=rcos(θ)italic-ϕ𝑟𝜃\phi=r\cos{(\theta)}italic_ϕ = italic_r roman_cos ( italic_θ ) and χ=rsin(θ)𝜒𝑟𝜃\chi=r\sin{(\theta)}italic_χ = italic_r roman_sin ( italic_θ ). In the ‘radial phase’ the slow-roll approximation holds for both the radial field, r𝑟ritalic_r, and the angular field, θ𝜃\thetaitalic_θ. However, for large hyperbolic curvature there is a region before the end of inflation where the slow-roll approximation does not hold anymore. As a result, the fields speed up and enter into a regime of angular inflation. In the angular phase the field trajectory proceeds along an angular direction, while the radial field, to a first approximation, is frozen.

We chose the following parameters

α~=1/600,Rmmχ2/mϕ2=9,formulae-sequence~𝛼1600subscript𝑅𝑚superscriptsubscript𝑚𝜒2superscriptsubscript𝑚italic-ϕ29\tilde{\alpha}=1/600,\quad R_{m}\equiv m_{\chi}^{2}/m_{\phi}^{2}=9,over~ start_ARG italic_α end_ARG = 1 / 600 , italic_R start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≡ italic_m start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 9 , (4.3)

and tune initial conditions in such way to have a very short duration of the radial phase (a couple of first e-folds of inflation) and angular inflation phase throughout the rest of evolution. Background evolution for our choice of parameters is shown in Fig. 3.

Refer to caption
Figure 3: Background trajectory of ϕitalic-ϕ\phiitalic_ϕ and χ𝜒\chiitalic_χ fields. Black circles illustrate the number of e-folds N𝑁Nitalic_N at different points on the trajectory. The moment of horizon crossing corresponds to N=Nend55subscript𝑁subscript𝑁end55N_{*}=N_{\rm end}-55italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_end end_POSTSUBSCRIPT - 55 and the end of inflation for this trajectory is at Nend=91.6subscript𝑁end91.6N_{\rm end}=91.6italic_N start_POSTSUBSCRIPT roman_end end_POSTSUBSCRIPT = 91.6.

To find the power spectra of perturbations we use the PyTransport code [92]. The evolution of power spectrum 999The value of the spectral tilt computed with the PyTransport code is ns=0.9652subscript𝑛𝑠0.9652n_{s}=0.9652italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.9652. with respect to the number of e-folds is shown in Fig. 4. For this parameter range the power spectrum of isocurvature perturbations, P𝒮subscript𝑃𝒮P_{\cal S}italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT, together with the cross-correlation, C𝒮subscript𝐶𝒮C_{\cal RS}italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT, decays rapidly and becomes negligible and numerically intractable. Therefore, due to poorly known correlation functions at the end of inflation, we will proceed with the expression (3.49) for fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT written via quantities computed at horizon crossing, where our numerical results are reliable.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Power spectrum of field perturbations Pϕabsubscriptsuperscript𝑃𝑎𝑏italic-ϕP^{ab}_{\phi}italic_P start_POSTSUPERSCRIPT italic_a italic_b end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT, curvature perturbations Psubscript𝑃P_{\cal R}italic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT, cross-correlation |C𝒮|subscript𝐶𝒮|C_{\cal RS}|| italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT | and isocurvature perturbations P𝒮subscript𝑃𝒮P_{\cal S}italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT throughout evolution (clockwise). Vertical dashed line on the plots corresponds to the moment of horizon crossing of the reference mode with a wave number ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. Dotted lines on |C𝒮|subscript𝐶𝒮|C_{\cal RS}|| italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT | and P𝒮subscript𝑃𝒮P_{\cal S}italic_P start_POSTSUBSCRIPT caligraphic_S end_POSTSUBSCRIPT plots correspond to the region where the power spectra is numerically intractable. We believe in this region all of the isocurvature modes decay away completely. We do not take into account numerical values from those regions in our computation.

We show the evolution of the entropic mass, defined in (3.15), and its contributions in Figure 5. From the right panel of Fig. 5 we see that the contribution subscriptperpendicular-toabsentperpendicular-to{\cal M}_{\perp\perp}caligraphic_M start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT, which is a sum of potential and curvature terms, is negative. However, since the turn rate is significant, the resulting mass of entropic fluctuation is of order one μ/H𝒪(1)similar-to𝜇𝐻𝒪1\mu/H\sim{\cal O}(1)italic_μ / italic_H ∼ caligraphic_O ( 1 ), which is shown on the left panel of Fig. 5, together with |ms|/H𝒪(1)similar-tosubscript𝑚𝑠𝐻𝒪1|m_{s}|/H\sim{\cal O}(1)| italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT | / italic_H ∼ caligraphic_O ( 1 ) defined by

ms2=μ24H2(η2ϵ)2=H2(η2ϵ)2.subscriptsuperscript𝑚2𝑠superscript𝜇24superscript𝐻2superscriptsubscript𝜂perpendicular-to2italic-ϵ2subscriptperpendicular-toabsentperpendicular-tosuperscript𝐻2superscriptsubscript𝜂perpendicular-to2italic-ϵ2m^{2}_{s}=\mu^{2}-4H^{2}\left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)^{2}% ={\cal M}_{\perp\perp}-H^{2}\left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)% ^{2}.italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = caligraphic_M start_POSTSUBSCRIPT ⟂ ⟂ end_POSTSUBSCRIPT - italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (4.4)

This explains the quick decay of isocurvature power spectrum shown in Fig. 4. Nevertheless, it is essential to note that the dynamics never reach the regime of μ/H1much-greater-than𝜇𝐻1\mu/H\gg 1italic_μ / italic_H ≫ 1 and cannot be fully described by the effective single-field approaches and regimes discussed in e.g. [59]. Still, flattened and equilateral contributions to the bispectrum are expected [59], in addition to the contribution of the local shape sourced by the (decaying but) non-vanishing entropic modes on superhorizon scales. We will get back to the discussion of the resulting bispectrum shape for the current model later in this section.

Refer to caption
Refer to caption
Figure 5: Left panel: Evolution of entropic mass μ/H𝜇𝐻\mu/Hitalic_μ / italic_H (blue solid curve) and the absolute value of |ms|/Hsubscript𝑚𝑠𝐻|m_{s}|/H| italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT | / italic_H (black dot-dashed curve) with respect to the number of e-folds. Right panel: Different components of the entropic mass μ2/H2superscript𝜇2superscript𝐻2\mu^{2}/H^{2}italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (solid blue curve): eaebabV/H2superscriptsubscript𝑒perpendicular-to𝑎superscriptsubscript𝑒perpendicular-to𝑏subscript𝑎subscript𝑏𝑉superscript𝐻2e_{\perp}^{a}e_{\perp}^{b}\nabla_{a}\nabla_{b}V/H^{2}italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_V / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (solid orange curve), ea,ebRdfbaϕdϕfsubscript𝑒𝑎perpendicular-tosuperscriptsubscript𝑒perpendicular-to𝑏subscriptsuperscript𝑅𝑎𝑑𝑓𝑏superscriptitalic-ϕ𝑑superscriptitalic-ϕ𝑓-e_{a,\perp}e_{\perp}^{b}R^{a}_{dfb}\phi^{\prime d}\phi^{\prime f}- italic_e start_POSTSUBSCRIPT italic_a , ⟂ end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d italic_f italic_b end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_d end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT ′ italic_f end_POSTSUPERSCRIPT (green dashed curve), 3(η2ϵ)23superscriptsubscript𝜂perpendicular-to2italic-ϵ23\left(\frac{\eta_{\perp}}{\sqrt{2\epsilon}}\right)^{2}3 ( divide start_ARG italic_η start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 italic_ϵ end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (solid red curve). The black dot-dashed curve shows the evolution of ms2/H2superscriptsubscript𝑚𝑠2superscript𝐻2m_{s}^{2}/H^{2}italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The vertical gray line on both panels corresponds to the moment of horizon crossing.

To compute the transfer function we use equations (3.12), (3.13), (3.14). In Fig. 6 we show the evolution of γ(N)𝛾𝑁\gamma(N)italic_γ ( italic_N ), δ(N)𝛿𝑁-\delta(N)- italic_δ ( italic_N ), T𝒮(N,N)subscript𝑇𝒮subscript𝑁𝑁T_{\cal{RS}}(N_{*},N)italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) and T𝒮𝒮(N,N)subscript𝑇𝒮𝒮subscript𝑁𝑁T_{\cal{SS}}(N_{*},N)italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) during inflation. One can see that during angular phase of inflation δ(N)<0𝛿𝑁0\delta(N)<0italic_δ ( italic_N ) < 0, therefore isocurvature modes exponentially decay to zero. Nevertheless, positive and non-zero γ(N)𝛾𝑁\gamma(N)italic_γ ( italic_N ) induces rapid growth of T𝒮subscript𝑇𝒮T_{\cal{RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT that saturates when T𝒮𝒮subscript𝑇𝒮𝒮T_{\cal{SS}}italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT reaches zero. Non-zero value of T𝒮subscript𝑇𝒮T_{\cal{RS}}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT at the end of inflation plays crucial role in generation of non-Gaussianity parameter as we will see below.

Refer to caption
Refer to caption
Figure 6: Left panel: Evolution of functions γ(N)𝛾𝑁\gamma(N)italic_γ ( italic_N ) (red solid) and δ(N)𝛿𝑁-\delta(N)- italic_δ ( italic_N ) (blue dashed) with respect to the number of e-folds. The vertical gray line corresponds to the moment of horizon crossing. Right panel: Transfer functions T𝒮(N,N)subscript𝑇𝒮subscript𝑁𝑁T_{\cal{RS}}(N_{*},N)italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) (red solid) and T𝒮𝒮(N,N)subscript𝑇𝒮𝒮subscript𝑁𝑁T_{\cal{SS}}(N_{*},N)italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) (blue dashed) and their evolution in e-folds. The horizontal gray dashed line shows that soon after horizon crossing T𝒮(N,N)subscript𝑇𝒮subscript𝑁𝑁T_{\cal{RS}}(N_{*},N)italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_N ) saturates and does not get sourced anymore. In both panels we used parameters given in Eq. (4.3).

In order to use (3.49) one has to find (T𝒮)(\nabla T_{\cal RS})_{\parallel*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT, (T𝒮)subscriptsubscript𝑇𝒮perpendicular-toabsent(\nabla T_{\cal RS})_{\perp*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT and M~subscript~𝑀perpendicular-toperpendicular-toabsent\tilde{M}_{\perp\perp*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT, M~\tilde{M}_{\perp\parallel*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT. It is worth noting that the gradient of the transfer function at horizon crossing was computed analytically in the case of flat field-space metric in SRST approximation in [52]. However, for arbitrary turn-rate the computation gets much more involved. Therefore we compute the terms above semi-analytically. To evaluate (T𝒮)subscriptsubscript𝑇𝒮(\nabla T_{\cal RS})_{*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT we use the finite-difference method. First, we perturb initial conditions for the background trajectory in ϕitalic-ϕ\phiitalic_ϕ and χ𝜒\chiitalic_χ directions at the moment of horizon crossing and solve background equations with perturbed initial conditions. After computing derivatives of T𝒮subscript𝑇𝒮T_{\cal RS}italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT at horizon crossing with respect to the field basis, we rotate it to the kinematical basis using ea,easubscriptsuperscript𝑒𝑎perpendicular-tosubscriptsuperscript𝑒𝑎parallel-toe^{a}_{\perp},e^{a}_{\parallel}italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT , italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT to find (T𝒮)(\nabla T_{\cal RS})_{\parallel*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT, (T𝒮)subscriptsubscript𝑇𝒮perpendicular-toabsent(\nabla T_{\cal RS})_{\perp*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT. To find M~\tilde{M}_{\perp\parallel*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT, M~subscript~𝑀perpendicular-toperpendicular-toabsent\tilde{M}_{\perp\perp*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT we use equation (2.15) and first compute (aηb)subscriptsubscript𝑎subscript𝜂𝑏(\nabla_{a}\eta_{b})_{*}( ∇ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT using the same approach with finite difference method described above. The rest of the terms of M~absubscript~𝑀𝑎𝑏\tilde{M}_{ab}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT we evaluate at the moment of horizon crossing using the background trajectory. Finally, we use basis vectors of the kinematical basis to compute the perpendicular and parallel components of M~absubscript~𝑀𝑎𝑏\tilde{M}_{ab}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT at horizon crossing. Using this method we numerically confirm equations (2.17). Quantities such as η,η\eta_{\perp*},\eta_{\parallel*}italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT , italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT and ϵsubscriptitalic-ϵ\epsilon_{*}italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT are computed at the background level at horizon crossing using an unperturbed trajectory.

In order to find values of Iisubscript𝐼𝑖I_{i}italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT coefficients in (3.50) at horizon crossing we first compute αsubscript𝛼\alpha_{*}italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, βsubscript𝛽\beta_{*}italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT defined in (3.47) using the PyTransport code. For parameters (4.3) we find α=0.11,β=0.996formulae-sequencesubscript𝛼0.11subscript𝛽0.996\alpha_{*}=0.11,\beta_{*}=0.996italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.11 , italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.996. These values explicitly illustrate the deviation from SRST approximation with P=P𝒮subscript𝑃subscript𝑃𝒮P_{\cal R*}=P_{\cal S*}italic_P start_POSTSUBSCRIPT caligraphic_R ∗ end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT caligraphic_S ∗ end_POSTSUBSCRIPT and C𝒮=0subscript𝐶𝒮0C_{\cal RS*}=0italic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S ∗ end_POSTSUBSCRIPT = 0 where α=1subscript𝛼1\alpha_{*}=1italic_α start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 1, β=0subscript𝛽0\beta_{*}=0italic_β start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0. Together with the value of the transfer function at the end of inflation T𝒮=2.68subscript𝑇𝒮2.68T_{\cal RS}=2.68italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT = 2.68 we find the following values for coefficients

I1subscript𝐼1\displaystyle I_{1*}italic_I start_POSTSUBSCRIPT 1 ∗ end_POSTSUBSCRIPT =0.09,I3absent0.09subscript𝐼3\displaystyle=0.09,\quad I_{3*}= 0.09 , italic_I start_POSTSUBSCRIPT 3 ∗ end_POSTSUBSCRIPT =0.53,I5=0.22,formulae-sequenceabsent0.53subscript𝐼50.22\displaystyle=0.53,\quad I_{5*}=0.22,= 0.53 , italic_I start_POSTSUBSCRIPT 5 ∗ end_POSTSUBSCRIPT = 0.22 , (4.5)
I2subscript𝐼2\displaystyle I_{2*}italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT =0.03,I4absent0.03subscript𝐼4\displaystyle=0.03,\quad I_{4*}= 0.03 , italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT =0.67,I6=0.17.formulae-sequenceabsent0.67subscript𝐼60.17\displaystyle=0.67,\quad I_{6*}=0.17.= 0.67 , italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT = 0.17 . (4.6)

At the same time, we find

(T𝒮)\displaystyle(\nabla T_{\cal RS})_{\parallel*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT =\displaystyle== 0.046,M~\displaystyle 0.046,\quad\tilde{M}_{\perp\parallel*}0.046 , over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT =2.31,absent2.31\displaystyle=2.31,= 2.31 , (4.7)
(T𝒮)subscriptsubscript𝑇𝒮perpendicular-toabsent\displaystyle(\nabla T_{\cal RS})_{\perp*}( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT =\displaystyle== 16.09,M~16.09subscript~𝑀perpendicular-toperpendicular-toabsent\displaystyle 16.09,\quad\tilde{M}_{\perp\perp*}16.09 , over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ⟂ ∗ end_POSTSUBSCRIPT =0.006.absent0.006\displaystyle=-0.006.= - 0.006 . (4.8)

Finally, we insert all the above numbers together with η=0.0005\eta_{\parallel*}=-0.0005italic_η start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT = - 0.0005, η=0.276subscript𝜂perpendicular-toabsent0.276\eta_{\perp*}=0.276italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT = 0.276 and ϵ=0.0069subscriptitalic-ϵ0.0069\epsilon_{*}=0.0069italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.0069 (that gives the resulting turn-rate η/2ϵ2.35similar-to-or-equalssubscript𝜂perpendicular-toabsent2subscriptitalic-ϵ2.35\eta_{\perp*}/\sqrt{2\epsilon_{*}}\simeq 2.35italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ≃ 2.35) into (3.49) and compute fNLlocsubscriptsuperscript𝑓locNLf^{\rm loc}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT to be

fNL(4)=56(0.006I1+1.89I2+0.004I32.35I40.015I5+2.3I6)0.93.subscriptsuperscript𝑓4NL560.006subscript𝐼11.89subscript𝐼20.004subscript𝐼32.35subscript𝐼40.015subscript𝐼52.3subscript𝐼6similar-to-or-equals0.93f^{(4)}_{\rm NL}=-\frac{5}{6}\left(0.006\,I_{1*}+1.89\,I_{2*}+0.004\,I_{3*}-2.% 35\,I_{4*}-0.015\,I_{5*}+2.3\,I_{6*}\right)\simeq 0.93.italic_f start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = - divide start_ARG 5 end_ARG start_ARG 6 end_ARG ( 0.006 italic_I start_POSTSUBSCRIPT 1 ∗ end_POSTSUBSCRIPT + 1.89 italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT + 0.004 italic_I start_POSTSUBSCRIPT 3 ∗ end_POSTSUBSCRIPT - 2.35 italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT - 0.015 italic_I start_POSTSUBSCRIPT 5 ∗ end_POSTSUBSCRIPT + 2.3 italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT ) ≃ 0.93 . (4.9)

One can see that the largest contributions to the non-Gaussianity parameter are coming from the terms involving I4,I6,I2subscript𝐼4subscript𝐼6subscript𝐼2I_{4*},I_{6*},I_{2*}italic_I start_POSTSUBSCRIPT 4 ∗ end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 6 ∗ end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 2 ∗ end_POSTSUBSCRIPT (in descending order) that have in front of them η/2ϵsubscript𝜂perpendicular-toabsent2subscriptitalic-ϵ\eta_{\perp*}/\sqrt{2\epsilon_{*}}italic_η start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT / square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG, M~\tilde{M}_{\perp\parallel*}over~ start_ARG italic_M end_ARG start_POSTSUBSCRIPT ⟂ ∥ ∗ end_POSTSUBSCRIPT and 2ϵ(T𝒮)2subscriptitalic-ϵsubscriptsubscript𝑇𝒮perpendicular-toabsent\sqrt{2\epsilon_{*}}(\nabla T_{\cal RS})_{\perp*}square-root start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT respectively. Particularly interesting that the fourth and the sixth term appear with an opposite sign.

Refer to caption
Figure 7: Evolution of the non-Gaussianity parameter fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT evaluated on the equilateral triangle for the pivot scale k𝑘kitalic_k that exits horizon 55 e-folds before the end of inflation. The parameter values used in the plot are given in Eq. (4.3). The vertical gray dashed line represents the moment of horizon crossing N=36.6subscript𝑁36.6N_{*}=36.6italic_N start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 36.6.

In order to check our analytical result (4.9) we compute fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT numerically using the PyTransport code. The evolution of the non-Gaussianity parameter is shown in Fig. 7. To find the bispectrum shape for all types of triangle configurations, we compute the amplitude of the bispectrum fNL(α,β)subscript𝑓NLsuperscript𝛼superscript𝛽f_{\rm NL}(\alpha^{\prime},\beta^{\prime})italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) defined in Eq. (3.34) for (α,β)superscript𝛼superscript𝛽(\alpha^{\prime},\beta^{\prime})( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) plane with vertices (1,0),(1,0)1010(-1,0),(1,0)( - 1 , 0 ) , ( 1 , 0 ) and (0,1)01(0,1)( 0 , 1 ) respectively that parameterize any triangle shape based on the wave numbers

k1subscript𝑘1\displaystyle k_{1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT =k2(1β),absentsubscript𝑘21superscript𝛽\displaystyle=\frac{k_{*}}{2}(1-\beta^{\prime}),= divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ( 1 - italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , (4.10)
k2subscript𝑘2\displaystyle k_{2}italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =k4(1+α+β),absentsubscript𝑘41superscript𝛼superscript𝛽\displaystyle=\frac{k_{*}}{4}(1+\alpha^{\prime}+\beta^{\prime}),= divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 4 end_ARG ( 1 + italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,
k3subscript𝑘3\displaystyle k_{3}italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT =k4(1α+β),absentsubscript𝑘41superscript𝛼superscript𝛽\displaystyle=\frac{k_{*}}{4}(1-\alpha^{\prime}+\beta^{\prime}),= divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 4 end_ARG ( 1 - italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

where ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is a pivot scale that exits horizon 55 e-folds before the end of inflation. The resulting shape dependence of |fNL(α,β)|subscript𝑓NLsuperscript𝛼superscript𝛽|f_{\rm NL}(\alpha^{\prime},\beta^{\prime})|| italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) | is shown in Figure 8. The bispectrum amplitude peaks in absolute value for equilateral configurations k1k2k3similar-tosubscript𝑘1subscript𝑘2similar-tosubscript𝑘3k_{1}\sim k_{2}\sim k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∼ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∼ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT with (α,β)=(0,1/3)superscript𝛼superscript𝛽013(\alpha^{\prime},\beta^{\prime})=(0,1/3)( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( 0 , 1 / 3 ), folded configurations k1+k2k3similar-tosubscript𝑘1subscript𝑘2subscript𝑘3k_{1}+k_{2}\sim k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∼ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT with (α,β)=(0,0),(1/2,1/2),(1/2,1/2)superscript𝛼superscript𝛽0012121212(\alpha^{\prime},\beta^{\prime})=(0,0),(-1/2,1/2),(1/2,1/2)( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( 0 , 0 ) , ( - 1 / 2 , 1 / 2 ) , ( 1 / 2 , 1 / 2 ) and local (or squeezed) configurations k1k2k3much-less-thansubscript𝑘1subscript𝑘2similar-tosubscript𝑘3k_{1}\ll k_{2}\sim k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≪ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∼ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT with (α,β)=(1,0),(0,1),(1,0)superscript𝛼superscript𝛽100110(\alpha^{\prime},\beta^{\prime})=(-1,0),(0,1),(1,0)( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( - 1 , 0 ) , ( 0 , 1 ) , ( 1 , 0 ). In addition to that, the magnitude of the bispectrum amplitude has an opposite sign in equilateral and flattened configurations as shown in Figure 9, in agreement with ref. [59]101010With an opposite sign of the bispectrum amplitude, due to an opposite sign in the definition (3.34).. In particular, for the current example we have fNLeqfNLflat=0.705similar-to-or-equalssubscriptsuperscript𝑓eqNLsubscriptsuperscript𝑓flatNL0.705f^{\rm eq}_{\rm NL}\simeq-f^{\rm flat}_{\rm NL}=0.705italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ≃ - italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = 0.705, where fNLeqsubscriptsuperscript𝑓eqNLf^{\rm eq}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT is a constant representing the amplitude of the equilateral shape and defined as [93]

Seq=910fNLeq[(k12k2k3+2perms.)+(k1k2+5perms.)2]=fNLeqS~eq.S^{\rm eq}=\frac{9}{10}f^{\rm eq}_{\rm NL}\left[-\left(\frac{k_{1}^{2}}{k_{2}k% _{3}}+2\,perms.\right)+\left(\frac{k_{1}}{k_{2}}+5\,perms.\right)-2\right]=f^{% \rm eq}_{\rm NL}\,\tilde{S}^{\rm eq}.italic_S start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT = divide start_ARG 9 end_ARG start_ARG 10 end_ARG italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT [ - ( divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG + 2 italic_p italic_e italic_r italic_m italic_s . ) + ( divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG + 5 italic_p italic_e italic_r italic_m italic_s . ) - 2 ] = italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT . (4.11)

Similarly, a constant that represents the amplitude of the flattened shape, fNLflatsubscriptsuperscript𝑓flatNLf^{\rm flat}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT, is [94]

Sflat=fNLflatS~flat=fNLflat(S~eq+910).superscript𝑆flatsubscriptsuperscript𝑓flatNLsuperscript~𝑆flatsubscriptsuperscript𝑓flatNLsuperscript~𝑆eq910S^{\rm flat}=f^{\rm flat}_{\rm NL}\,\tilde{S}^{\rm flat}=f^{\rm flat}_{\rm NL}% \left(-\tilde{S}^{\rm eq}+\frac{9}{10}\right).italic_S start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT = italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT = italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( - over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + divide start_ARG 9 end_ARG start_ARG 10 end_ARG ) . (4.12)
Refer to caption
Figure 8: Shape dependence of |fNL(α,β)|subscript𝑓NLsuperscript𝛼superscript𝛽|f_{\rm NL}(\alpha^{\prime},\beta^{\prime})|| italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) |.

From Figure 8, we see that the amplitude of the bispectrum in the current example peaks in local, equilateral and flattened configurations, therefore a total shape may be written as a linear combination

S=fNLlocS~loc+fNLeqS~eq+fNLflatS~flat,𝑆subscriptsuperscript𝑓locNLsuperscript~𝑆locsubscriptsuperscript𝑓eqNLsuperscript~𝑆eqsubscriptsuperscript𝑓flatNLsuperscript~𝑆flatS=f^{\rm loc}_{\rm NL}\tilde{S}^{\rm loc}+f^{\rm eq}_{\rm NL}\tilde{S}^{\rm eq% }+f^{\rm flat}_{\rm NL}\tilde{S}^{\rm flat},italic_S = italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT + italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT , (4.13)

where a constant that defines the amplitude of local non-Gaussianity, fNLlocsubscriptsuperscript𝑓locNLf^{\rm loc}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT, is defined as

Sloc=310fNLloc(k12k2k3+2perms.)=fNLlocS~loc.S^{\rm loc}=\frac{3}{10}f^{\rm loc}_{\rm NL}\left(\frac{k_{1}^{2}}{k_{2}k_{3}}% +2\,perms.\right)=f^{\rm loc}_{\rm NL}\tilde{S}^{\rm loc}.italic_S start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT = divide start_ARG 3 end_ARG start_ARG 10 end_ARG italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG + 2 italic_p italic_e italic_r italic_m italic_s . ) = italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT . (4.14)

To compute the local non-Gaussianity parameter we use the definition of the bispectrum [95]

B(k1,k2,k3)=(2π)4𝒫2(k)S(k1k2k3)2,𝐵subscript𝑘1subscript𝑘2subscript𝑘3superscript2𝜋4superscript𝒫2subscript𝑘𝑆superscriptsubscript𝑘1subscript𝑘2subscript𝑘32B(k_{1},k_{2},k_{3})=\frac{(2\pi)^{4}{\cal P}^{2}(k_{*})S}{(k_{1}k_{2}k_{3})^{% 2}},italic_B ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = divide start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT caligraphic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_S end_ARG start_ARG ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (4.15)

where S𝑆Sitalic_S is the total shape function of the bispectrum and 𝒫(k)=2.1×109𝒫subscript𝑘2.1superscript109{\cal P}(k_{*})=2.1\times 10^{-9}caligraphic_P ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = 2.1 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT. When the shape function of the bispectrum is local, the local non-Gaussianity parameter is

fNLloc=B(k1,k2,k3)(k1k2k3)2(2π)4𝒫2(k)S~loc,subscriptsuperscript𝑓locNL𝐵subscript𝑘1subscript𝑘2subscript𝑘3superscriptsubscript𝑘1subscript𝑘2subscript𝑘32superscript2𝜋4superscript𝒫2subscript𝑘superscript~𝑆locf^{\rm loc}_{\rm NL}=\frac{B(k_{1},k_{2},k_{3})(k_{1}k_{2}k_{3})^{2}}{(2\pi)^{% 4}{\cal P}^{2}(k_{*})\,\tilde{S}^{\rm loc}},italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT = divide start_ARG italic_B ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT caligraphic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT end_ARG , (4.16)

with wavenumbers k1,k2,k3subscript𝑘1subscript𝑘2subscript𝑘3k_{1},k_{2},k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT fixed at local configurations. We have checked that at squeezed triangles fNLlocsubscriptsuperscript𝑓locNLf^{\rm loc}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT coincides with fNL(α,β)subscript𝑓NLsuperscript𝛼superscript𝛽f_{\rm NL}(\alpha^{\prime},\beta^{\prime})italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ), the latter is shown on the right panel of Figure 9, and gives |fNLloc|𝒪(1)similar-tosubscriptsuperscript𝑓locNL𝒪1|f^{\rm loc}_{\rm NL}|\sim{\cal O}(1)| italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT | ∼ caligraphic_O ( 1 ) in agreement with the analytical result (4.9).

Since in our case the total bispectrum shape is combined, it is worth checking the contribution from other shapes. From (4.13) and (4.15) one can find the local non-Gaussianity parameter in the form

fNLloc1S~loc[B(k1,k2,k3)(k1k2k3)2(2π)4𝒫2(k)fNLeq(2S~eq910)],similar-to-or-equalssubscriptsuperscript𝑓locNL1superscript~𝑆locdelimited-[]𝐵subscript𝑘1subscript𝑘2subscript𝑘3superscriptsubscript𝑘1subscript𝑘2subscript𝑘32superscript2𝜋4superscript𝒫2subscript𝑘subscriptsuperscript𝑓eqNL2superscript~𝑆eq910f^{\rm loc}_{\rm NL}\simeq\frac{1}{\tilde{S}^{\rm loc}}\left[\frac{B(k_{1},k_{% 2},k_{3})(k_{1}k_{2}k_{3})^{2}}{(2\pi)^{4}{\cal P}^{2}(k_{*})}-f^{\rm eq}_{\rm NL% }\left(2\tilde{S}^{\rm eq}-\frac{9}{10}\right)\right],italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ≃ divide start_ARG 1 end_ARG start_ARG over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT end_ARG [ divide start_ARG italic_B ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT caligraphic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) end_ARG - italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( 2 over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT - divide start_ARG 9 end_ARG start_ARG 10 end_ARG ) ] , (4.17)

where we have used the general relation S~flat=(S~eq+910)superscript~𝑆flatsuperscript~𝑆eq910\tilde{S}^{\rm flat}=\left(-\tilde{S}^{\rm eq}+\frac{9}{10}\right)over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT = ( - over~ start_ARG italic_S end_ARG start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT + divide start_ARG 9 end_ARG start_ARG 10 end_ARG ) and fNLeqfNLflatsimilar-to-or-equalssubscriptsuperscript𝑓eqNLsubscriptsuperscript𝑓flatNLf^{\rm eq}_{\rm NL}\simeq-f^{\rm flat}_{\rm NL}italic_f start_POSTSUPERSCRIPT roman_eq end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ≃ - italic_f start_POSTSUPERSCRIPT roman_flat end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT for the current example model. We have checked that the second contribution to (4.17) does not spoil the prediction of |fNLloc|𝒪(1)similar-tosubscriptsuperscript𝑓locNL𝒪1|f^{\rm loc}_{\rm NL}|\sim{\cal O}(1)| italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT | ∼ caligraphic_O ( 1 ).

It is worth noting that the analytical result (4.9) is derived in the approximation of single horizon crossing time of wavenumbers k1,k2,k3subscript𝑘1subscript𝑘2subscript𝑘3k_{1},k_{2},k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, as we discuss in Section 3.4. This corresponds to a near-equilateral momentum regime with k1k2k3subscript𝑘1subscript𝑘2subscript𝑘3k_{1}\approx k_{2}\approx k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. In order to account for a highly squeezed momentum configuration k1k2k3much-less-thansubscript𝑘1subscript𝑘2subscript𝑘3k_{1}\ll k_{2}\approx k_{3}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≪ italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT one needs to take into account very different horizon exit times t1t2t3much-less-thansubscript𝑡1subscript𝑡2subscript𝑡3t_{1}\ll t_{2}\approx t_{3}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≪ italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ italic_t start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Extensive investigation of the highly squeezed limit significantly complicates the analytic treatment [90]. This goes beyond the scope of the current work and we leave it for the forthcoming explorations. Despite the limitations of single horizon crossing time approximation, our analytical result (4.9) agrees well with numerical results for local non-Gaussianity parameter.

Refer to caption
Refer to caption
Figure 9: Left: The amplitude of fNL(α,β)subscript𝑓NLsuperscript𝛼superscript𝛽f_{\rm NL}(\alpha^{\prime},\beta^{\prime})italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) zoomed in into a region α(0.8,0.8)superscript𝛼0.80.8\alpha^{\prime}\in(-0.8,0.8)italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ ( - 0.8 , 0.8 ) and β(0,0.9)𝛽00.9\beta\in(0,0.9)italic_β ∈ ( 0 , 0.9 ). Right: The amplitude of |fNL(α,β)|subscript𝑓NLsuperscript𝛼superscript𝛽|f_{\rm NL}(\alpha^{\prime},\beta^{\prime})|| italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) | zoomed into a squeezed triangles around (α,β)=(0.99,0)superscript𝛼superscript𝛽0.990(\alpha^{\prime},\beta^{\prime})=(0.99,0)( italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( 0.99 , 0 ) (right corner of Figure 8).

5 Summary and discussion

In this work, we have used the δN𝛿𝑁\delta Nitalic_δ italic_N formalism to derive a general analytical formula for the bispectrum generated on super-horizon scales in two-field, rapid-turn models of inflation. We have contrasted our result with the bispectrum computed in the multi-field SRST approximation [52] and have demonstrated that a rapidly turning field trajectory and non-zero cross-correlation of field perturbations at horizon crossing generate novel additional contributions to the bispectrum. In general, the resulting bispectrum is not of the local shape. In order to explicitly identify potentially large model-independent contributions, we have expressed fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT in terms of quantities evaluated either at horizon crossing or at the end of inflation. Our findings do not depend on the particular dynamics of models and are applicable to any two-field attractor model of inflation.

Additionally, we have illustrated our results through the explicit example of ‘angular inflation’ [58] and have demonstrated that contributions involving the curvature-isocurvature cross-correlation and the turn rate are dominant. We have found that the resulting bispectrum shape in the angular inflation model is a linear combination of local, equilateral and flattened shapes, with the same order of magnitude for their individual amplitudes. Despite the combined shape, we have verified numerically and analytically that, within a certain parameter range, this model can generate the local component fNLloc𝒪(1)similar-tosubscriptsuperscript𝑓locNL𝒪1f^{\rm loc}_{\rm NL}\sim{\cal O}(1)italic_f start_POSTSUPERSCRIPT roman_loc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ∼ caligraphic_O ( 1 ). In addition to the main discussion provided in this work, which focuses on the case when the modes exit the horizon during angular phase of inflation, we have also considered the case when the horizon exit happens during the (non-rapid-turn) radial phase within the same angular inflation model. In the radial phase the contribution from the turn-rate and the cross-correlation is negligible, and we have found that no significant amount of non-Gaussianity is generated. To provide further checks of our formula, we have also applied our result to realizations of orbital inflation [67] with negligible turn-rate and cross-correlation and have verified both analytically and numerically that the produced non-Gaussianity is very small, in agreement with the general prediction for fNLsubscript𝑓NLf_{\rm NL}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT in SRST approximation [52].

Several follow-up questions deserve further investigation. In this paper we have analyzed the general formula for the bispectrum in rapid-turn models of inflation for the case of single horizon crossing time of wave numbers. It was shown in [90] that accounting for different levels of hierarchy between the scales can lead to substantial corrections to the bispectrum, of the order of 20%percent2020\%20 %, in models of slow-turn inflation. It would be interesting to investigate (very) different horizon exit times in rapid-turn models of inflation. Another challenging question is the impact of different shape functions on the bispectrum, in particular those that give rise to large non-Gaussianity. This could lead to new phenomenology and provide potentially distinguishing observational probes. Last but not least, the generalization to the case with more than two fields would be interesting. We leave these exciting explorations for forthcoming work.

Acknowledgments

We thank Ana Achúcarro, Ricardo Z. Ferreira, Gonzalo A. Palma, Sébastien Renaux-Petel and Dong-Gang Wang for stimulating discussions and comments on this work. The work of D.M. and G.S. is supported by the European Research Council under Grant No. 742104 and by the Swedish Research Council (VR) under grants 2018-03641 and 2019-02337. Nordita is supported in part by NordForsk. O.I. is grateful to the University of Leiden for hospitality.

Appendix A Covariant definition for perturbations

In this Appendix we describe a covariant formalism for studying perturbations in multi-field models. Each scalar field ϕa(xμ)superscriptitalic-ϕ𝑎superscript𝑥𝜇\phi^{a}(x^{\mu})italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) can be expanded around its classical background value φa(t)superscript𝜑𝑎𝑡\varphi^{a}(t)italic_φ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t ) to first order as

ϕa(xμ)=φa(t)+δϕa(xμ).superscriptitalic-ϕ𝑎superscript𝑥𝜇superscript𝜑𝑎𝑡𝛿superscriptitalic-ϕ𝑎superscript𝑥𝜇\phi^{a}(x^{\mu})=\varphi^{a}(t)+\delta\phi^{a}(x^{\mu}).italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) = italic_φ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_t ) + italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) . (A.1)

The fluctuation δϕa(xμ)𝛿superscriptitalic-ϕ𝑎superscript𝑥𝜇\delta\phi^{a}(x^{\mu})italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) defines a finite coordinate displacement from a classical trajectory, it is gauge-dependent and does not transform covariantly. To represent the field fluctuations in a covariant manner, a unique vector 𝒬asuperscript𝒬𝑎{\cal Q}^{a}caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT can be constructed. Up to third order in fluctuations it relates to the field perturbation in the following way [96, 97]111111We use the version of the relation used in [78].

δϕa=𝒬a12Γbca𝒬b𝒬c+16(2ΓmnaΓbcnΓbc,da)𝒬b𝒬c𝒬m+𝒪(𝒬4).𝛿superscriptitalic-ϕ𝑎superscript𝒬𝑎12subscriptsuperscriptΓ𝑎𝑏𝑐superscript𝒬𝑏superscript𝒬𝑐162subscriptsuperscriptΓ𝑎𝑚𝑛subscriptsuperscriptΓ𝑛𝑏𝑐subscriptsuperscriptΓ𝑎𝑏𝑐𝑑superscript𝒬𝑏superscript𝒬𝑐superscript𝒬𝑚𝒪superscript𝒬4\delta\phi^{a}={\cal Q}^{a}-\frac{1}{2}\Gamma^{a}_{bc}{\cal Q}^{b}{\cal Q}^{c}% +\frac{1}{6}\left(2\Gamma^{a}_{mn}\Gamma^{n}_{bc}-\Gamma^{a}_{bc,d}\right){% \cal Q}^{b}{\cal Q}^{c}{\cal Q}^{m}+{\cal O}\left({\cal Q}^{4}\right).italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT caligraphic_Q start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT caligraphic_Q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 6 end_ARG ( 2 roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_n end_POSTSUBSCRIPT roman_Γ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT - roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c , italic_d end_POSTSUBSCRIPT ) caligraphic_Q start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT caligraphic_Q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_Q start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + caligraphic_O ( caligraphic_Q start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) . (A.2)

Here ΓbcasubscriptsuperscriptΓ𝑎𝑏𝑐\Gamma^{a}_{bc}roman_Γ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT are the Christoffel symbols with respect to the field space that are computed at background order in the fields. At the linear order δϕa𝛿superscriptitalic-ϕ𝑎\delta\phi^{a}italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and 𝒬asuperscript𝒬𝑎{\cal Q}^{a}caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT can be treated interchangeably. However, at higher orders, in particular for calculations of the three-point correlation function of filed fluctuations, the vector 𝒬asuperscript𝒬𝑎{\cal Q}^{a}caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT has to be used. To ensure the gauge-invariance, it is convenient to use the gauge-invariant Mukhanov-Sasaki variables for the perturbations [98, 29, 85]

Qa=𝒬a+φ˙Hψ.superscript𝑄𝑎superscript𝒬𝑎˙𝜑𝐻𝜓Q^{a}={\cal Q}^{a}+\frac{\dot{\varphi}}{H}\psi.italic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT = caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + divide start_ARG over˙ start_ARG italic_φ end_ARG end_ARG start_ARG italic_H end_ARG italic_ψ . (A.3)

It is worth noting that in the spatially flat gauge vectors Qasuperscript𝑄𝑎Q^{a}italic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT and 𝒬asuperscript𝒬𝑎{\cal Q}^{a}caligraphic_Q start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT are interchangeable. Throughout the paper we use the gauge-invariant covariant definition of field perturbations, however in order to simplify a notation we denote it as δϕa𝛿superscriptitalic-ϕ𝑎\delta\phi^{a}italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT.

Appendix B Full expressions for the bispectrum

In this Appendix we provide full expressions for the bispectrum found from (3.41). The full result for the numerator of (3.41) expressed via the power spectrum at horizon crossing is

(2ϵ)1/2NaNbNcdKabcd(k1,k2,k3)=superscript2subscriptitalic-ϵ12subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3absent\displaystyle(2\epsilon_{*})^{-1/2}\,N_{a}N_{b}N_{cd}K^{abcd}(k_{1},k_{2},k_{3% })=( 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = (B.1)
𝒫(k1)𝒫(k2)[cos2ΔNT𝒮(T𝒮)θT𝒮(ϵ)2ϵ+sinΔNcosΔN(T𝒮)]+\displaystyle{\cal P}_{{\cal R}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{2})\left% [-\cos^{2}\Delta_{N}T_{{\cal RS}}(\nabla T_{\cal RS})_{\parallel*}-\theta_{% \parallel*}T_{{\cal RS}}-\frac{(\nabla\epsilon)_{\parallel*}}{2\epsilon_{*}}+% \sin\Delta_{N}\cos\Delta_{N}(\nabla T_{\cal RS})_{\parallel*}\right]+caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ - roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT - italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ] +
𝒫𝒮(k1)𝒫𝒮(k2)[cos2ΔNT𝒮2(T𝒮)+θT𝒮2T𝒮3(ϵ)2ϵ+\displaystyle{\cal P}_{{\cal S}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{2})\left% [\cos^{2}\Delta_{N}T_{{\cal RS}}^{2}(\nabla T_{\cal RS})_{\perp*}+\theta_{% \perp*}T_{{\cal RS}}^{2}-T_{{\cal RS}}^{3}\frac{(\nabla\epsilon)_{\perp*}}{2% \epsilon_{*}}+\right.caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
sinΔNcosΔNT𝒮3(T𝒮)]+\displaystyle\sin\Delta_{N}\cos\Delta_{N}T_{{\cal RS}}^{3}(\nabla T_{\cal RS})% _{\perp*}\biggr{]}+roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ] +
𝒞𝒮(k1)𝒞𝒮(k2)[(1T𝒮2)(θ+θT𝒮)2T𝒮(ϵ)+(ϵ)T𝒮2ϵ+\displaystyle{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_{2})% \left[(1-T_{{\cal RS}}^{2})(\theta_{\perp*}+\theta_{\parallel*}T_{{\cal RS}})-% 2T_{{\cal RS}}\frac{(\nabla\epsilon)_{\perp*}+(\nabla\epsilon)_{\parallel*}T_{% {\cal RS}}}{2\epsilon_{*}}+\right.caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ ( 1 - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) - 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
((T𝒮)+.(T𝒮)T𝒮)(cos2ΔN(1T𝒮2)+2T𝒮sinΔNcosΔN)]+\displaystyle\left((\nabla T_{{\cal RS}})_{\perp*}+\biggl{.}(\nabla T_{{\cal RS% }})_{\parallel*}T_{{\cal RS}}\right)\left(\cos^{2}\Delta_{N}(1-T_{{\cal RS}}^{% 2})+2T_{{\cal RS}}\sin\Delta_{N}\cos\Delta_{N}\right)\biggr{]}+( ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + . ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ( roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( 1 - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) ] +
𝒫(k1)𝒫𝒮(k2)[cos2ΔNT𝒮(T𝒮)+θT𝒮T𝒮2(ϵ)2ϵ+sinΔNcosΔNT𝒮2(T𝒮)]+\displaystyle{\cal P}_{{\cal R}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{2})\left% [\cos^{2}\Delta_{N}T_{{\cal RS}}(\nabla T_{{\cal RS}})_{\parallel*}+\theta_{% \parallel*}T_{{\cal RS}}-T_{{\cal RS}}^{2}\frac{(\nabla\epsilon)_{\parallel*}}% {2\epsilon_{*}}+\sin\Delta_{N}\cos\Delta_{N}T_{{\cal RS}}^{2}(\nabla T_{{\cal RS% }})_{\parallel*}\right]+caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ] +
𝒫𝒮(k1)𝒫(k2)[cos2ΔNT𝒮2(T𝒮)θT𝒮2T𝒮(ϵ)2ϵ+\displaystyle{\cal P}_{{\cal S}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{2})\left% [-\cos^{2}\Delta_{N}T_{{\cal RS}}^{2}(\nabla T_{{\cal RS}})_{\perp*}-\theta_{% \perp*}T_{{\cal RS}}^{2}-T_{{\cal RS}}\frac{(\nabla\epsilon)_{\perp*}}{2% \epsilon_{*}}+\right.caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ - roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
sinΔNcosΔNT𝒮(T𝒮)]+\displaystyle\sin\Delta_{N}\cos\Delta_{N}T_{{\cal RS}}(\nabla T_{{\cal RS}})_{% \perp*}\biggr{]}+roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ] +
𝒞𝒮(k1)𝒫(k2)[T𝒮(θ+θT𝒮)12ϵ((ϵ)+(ϵ)T𝒮)+\displaystyle{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal P}_{{\cal R}_{*}}(k_{2})% \left[-T_{{\cal RS}}(\theta_{\perp*}+\theta_{\parallel*}T_{{\cal RS}})-\frac{1% }{2\epsilon_{*}}\left((\nabla\epsilon)_{\perp*}+(\nabla\epsilon*)_{\parallel}T% _{{\cal RS}}\right)+\right.caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) - divide start_ARG 1 end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ( ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + ( ∇ italic_ϵ ∗ ) start_POSTSUBSCRIPT ∥ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) +
((T𝒮)+(T𝒮)T𝒮).(T𝒮cos2ΔN+sinΔNcosΔN)]+\displaystyle\left((\nabla T_{{\cal RS}})_{\perp*}+(\nabla T_{{\cal RS}})_{% \parallel*}T_{{\cal RS}}\right)\biggl{.}(-T_{{\cal RS}}\cos^{2}\Delta_{N}+\sin% \Delta_{N}\cos\Delta_{N})\biggr{]}+( ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) . ( - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT + roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) ] +
𝒫(k1)𝒞𝒮(k2)[(1T𝒮2)(cos2ΔN(T𝒮)+θ)2T𝒮(ϵ)2ϵ+\displaystyle{\cal P}_{{\cal R}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_{2})% \left[(1-T_{{\cal RS}}^{2})(\cos^{2}\Delta_{N}(\nabla T_{{\cal RS}})_{% \parallel*}+\theta_{\parallel*})-2T_{{\cal RS}}\frac{(\nabla\epsilon)_{% \parallel*}}{2\epsilon_{*}}+\right.caligraphic_P start_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ ( 1 - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) - 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
2sinΔNcosΔNT𝒮(T𝒮)]+\displaystyle 2\sin\Delta_{N}\cos\Delta_{N}T_{{\cal RS}}(\nabla T_{{\cal RS}})% _{\parallel*}\biggr{]}+2 roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ] +
𝒞𝒮(k1)𝒫𝒮(k2)[T𝒮(θ+θT𝒮)T𝒮2(ϵ)+(ϵ)T𝒮2ϵ+\displaystyle{\cal C}_{{\cal RS}_{*}}(k_{1}){\cal P}_{{\cal S}_{*}}(k_{2})% \left[T_{{\cal RS}}(\theta_{\perp*}+\theta_{\parallel*}T_{{\cal RS}})-T_{{\cal RS% }}^{2}\frac{(\nabla\epsilon)_{\perp*}+(\nabla\epsilon)_{\parallel*}T_{{\cal RS% }}}{2\epsilon_{*}}+\right.caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
((T𝒮)+(T𝒮)T𝒮).(T𝒮cos2ΔN+T𝒮2sinΔNcosΔN)]+\displaystyle\left((\nabla T_{{\cal RS}})_{\perp*}+(\nabla T_{{\cal RS}})_{% \parallel*}T_{{\cal RS}}\right)\biggl{.}\left(T_{{\cal RS}}\cos^{2}\Delta_{N}+% T_{{\cal RS}}^{2}\sin\Delta_{N}\cos\Delta_{N}\right)\biggr{]}+( ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) . ( italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) ] +
𝒫𝒮(k1)𝒞𝒮(k2)[T𝒮(1T𝒮2)(cos2ΔN(T𝒮)+θ)2T𝒮2(ϵ)2ϵ+\displaystyle{\cal P}_{{\cal S}_{*}}(k_{1}){\cal C}_{{\cal RS}_{*}}(k_{2})% \left[T_{{\cal RS}}(1-T_{{\cal RS}}^{2})(\cos^{2}\Delta_{N}(\nabla T_{{\cal RS% }})_{\perp*}+\theta_{\perp*})-2T_{{\cal RS}}^{2}\frac{(\nabla\epsilon)_{\perp*% }}{2\epsilon_{*}}+\right.caligraphic_P start_POSTSUBSCRIPT caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( 1 - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT + italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ) - 2 italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG +
2sinΔNcosΔNT𝒮2(T𝒮)]+(k cyclic perms).\displaystyle 2\sin\Delta_{N}\cos\Delta_{N}T_{{\cal RS}}^{2}(\nabla T_{{\cal RS% }})_{\perp*}\biggr{]}+(\vec{k}{\rm\text{ cyclic perms}}).2 roman_sin roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT roman_cos roman_Δ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT ] + ( over→ start_ARG italic_k end_ARG cyclic perms ) .

The numerator of (3.41) expressed via the power spectrum at the end of inflation is given by

(2ϵ)1/2NaNbNcdKabcd(k1,k2,k3)=superscript2subscriptitalic-ϵ12subscript𝑁𝑎subscript𝑁𝑏subscript𝑁𝑐𝑑superscript𝐾𝑎𝑏𝑐𝑑subscript𝑘1subscript𝑘2subscript𝑘3absent\displaystyle(2\epsilon_{*})^{-1/2}\,N_{a}N_{b}N_{cd}K^{abcd}(k_{1},k_{2},k_{3% })=( 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c italic_d end_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT italic_a italic_b italic_c italic_d end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = (B.2)
𝒫(k1)𝒫(k2)[(ϵ)2ϵθT𝒮]+\displaystyle{\cal P}_{{\cal R}}(k_{1}){\cal P}_{{\cal R}}(k_{2})\left[-\frac{% (\nabla\epsilon)_{\parallel*}}{2\epsilon_{*}}-\theta_{\parallel*}T_{{\cal RS}}% \right]+caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG - italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ] +
𝒞𝒮(k1)𝒞𝒮(k2)T𝒮𝒮2[(1+T𝒮2)(θT𝒮θ)+((T𝒮)T𝒮(T𝒮))]+\displaystyle\frac{{\cal C}_{{\cal RS}}(k_{1}){\cal C}_{{\cal RS}}(k_{2})}{T_{% {\cal SS}}^{2}}\biggl{[}(1+T_{{\cal RS}}^{2})(\theta_{\perp*}-T_{{\cal RS}}% \theta_{\parallel*})+((\nabla T_{\cal RS})_{\perp*}-T_{{\cal RS}}(\nabla T_{% \cal RS})_{\parallel*})\biggr{]}+divide start_ARG caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) + ( ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ) ] +
𝒫(k1)𝒞𝒮(k2)T𝒮𝒮[θ(1+T𝒮2)+(T𝒮)]+\displaystyle\frac{{\cal P}_{{\cal R}}(k_{1}){\cal C}_{{\cal RS}}(k_{2})}{T_{{% \cal SS}}}\biggl{[}\theta_{\parallel*}(1+T_{{\cal RS}}^{2})+(\nabla T_{\cal RS% })_{\parallel*}\biggr{]}+divide start_ARG caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT end_ARG [ italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ( 1 + italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + ( ∇ italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT ] +
𝒞𝒮(k1)𝒫(k2)T𝒮𝒮[(ϵ)(ϵ)T𝒮2ϵT𝒮(θθT𝒮)]+(k cyclic perms).\displaystyle\frac{{\cal C}_{{\cal RS}}(k_{1}){\cal P}_{{\cal R}}(k_{2})}{T_{{% \cal SS}}}\left[-\frac{(\nabla\epsilon)_{\perp*}-(\nabla\epsilon)_{\parallel*}% T_{{\cal RS}}}{2\epsilon_{*}}-T_{{\cal RS}}(\theta_{\perp*}-\theta_{\parallel*% }T_{{\cal RS}})\right]+(\vec{k}{\rm\text{ cyclic perms}}).divide start_ARG caligraphic_C start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT caligraphic_R end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_T start_POSTSUBSCRIPT caligraphic_S caligraphic_S end_POSTSUBSCRIPT end_ARG [ - divide start_ARG ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - ( ∇ italic_ϵ ) start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_ϵ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG - italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ( italic_θ start_POSTSUBSCRIPT ⟂ ∗ end_POSTSUBSCRIPT - italic_θ start_POSTSUBSCRIPT ∥ ∗ end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT caligraphic_R caligraphic_S end_POSTSUBSCRIPT ) ] + ( over→ start_ARG italic_k end_ARG cyclic perms ) .

References