Probing ultralight scalar, vector and tensor dark matter with pulsar timing arrays

Caner Ünal unalx005@umn.edu Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel Feza Gursey Institute, Bogazici University, Kandilli, 34684, Istanbul, Turkey    Federico R. Urban federico.urban@fzu.cz CEICO, Institute of Physics of the Czech Academy of Sciences, 182 21 Prague 8, Czech Republic    Ely D. Kovetz kovetz@bgu.ac.il Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
Abstract

Pulsar timing arrays (PTAs) are sensitive to oscillations in the gravitational potential along the line-of-sight due to ultralight particle pressure. We calculate the probing power of PTAs for ultralight bosons across all frequencies, from those larger than the inverse observation time to those smaller than the inverse distance to the pulsar. We show that since the signal amplitude grows comparably to the degradation in PTA sensitivity at frequencies smaller than inverse observation time, the discovery potential can be extended towards lower masses by over three decades, maintaining high precision. We demonstrate that, in the mass range 10261023superscript1026superscript102310^{-26}-10^{-23}10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT eV, existing 15-year PTA data can robustly detect or rule out an ultralight component down to O(110)%𝑂percent110O(1-10)\%italic_O ( 1 - 10 ) % of the total dark matter. Non-detection, together with other bounds in different mass ranges, will imply that ultralight scalar/axion can comprise at most 110%1percent101-10\%1 - 10 % of dark matter in the 10301017superscript1030superscript101710^{-30}\!-\!10^{-17}10 start_POSTSUPERSCRIPT - 30 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 17 end_POSTSUPERSCRIPT eV range. With 30 years of observation, current PTAs can extend the reach down to 0.11%0.1percent10.1-1\%0.1 - 1 %, while next-generation PTAs such as SKA can attain the 0.010.1%0.01percent0.10.01-0.1\%0.01 - 0.1 % precision. We generalize and derive predictions for ultralight spin-1 vector (i.e. dark photon) and spin-2 tensor dark components.

Ultralight particles are intriguing dark matter candidates, motivated by high energy theories Svrcek:2006yi . As they have de-Broglie wavelengths comparably to galactic or even larger cluster scales, depending on their mass, they would leave marks on cosmological and astrophysical observables Arvanitaki:2009fg . One such effect comes from the pressure of the ultralight field which could cause the energy-momentum tensor and equivalently spacetime to fluctuate in a monochromatic way Khmelnitsky:2013lxt . These fluctuations would modify the observed arrival time of pulses from pulsars and can be used to extract the properties, e.g. mass and energy density, of ultralight scalar/axion-like (spin-0), vector (dark photon/spin-1) and tensor (spin-2) bosons, even if they form a fraction Blum:2021oxj ; Ye:2021iwa of dark matter.

Ultralight bosonic degrees of freedom have undergone intense exploration in recent years (see Ref. Ferreira:2020fam for a review). The mass parameter space has already been constrained at several distinct scales by a number of probes. Cosmic microwave background experiments (CMB) Hlozek:2014lca ; Poulin:2018dzj combined with large-scale structure surveys Lague:2021frh have derived bounds on the extremely light range, roughly 10321025eVsuperscript1032superscript1025eV10^{-32}\!-\!10^{-25}\,{\rm eV}10 start_POSTSUPERSCRIPT - 32 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 25 end_POSTSUPERSCRIPT roman_eV. The ultraviolet luminosity function and reionization constrain the 10231022eVsuperscript1023superscript1022eV10^{-23}\!-\!10^{-22}\,{\rm eV}10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV range Bozek:2014uqa . Lyman-α𝛼\alphaitalic_α experiments reaching large wavenumbers of the matter power spectrum probe approximately the range 10231020.5eVsuperscript1023superscript1020.5eV10^{-23}\!-\!10^{-20.5}\,{\rm eV}10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 20.5 end_POSTSUPERSCRIPT roman_eV Kobayashi:2017jcf ; Irsic:2017yje ; Armengaud:2017nkf ; Rogers:2020ltq ; Rogers:2020cup , and the shape of Eridanus-II the 1020.51019eVsuperscript1020.5superscript1019eV10^{-20.5}-10^{-19}\,{\rm eV}10 start_POSTSUPERSCRIPT - 20.5 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 19 end_POSTSUPERSCRIPT roman_eV rangeMarsh:2018zyw . Galaxy rotation curves probe the 1023.71022eVsuperscript1023.7superscript1022eV10^{-23.7}-10^{-22}\,{\rm eV}10 start_POSTSUPERSCRIPT - 23.7 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV range Bar:2021kti . Secular variations in binary-pulsar orbital parameters can test the mass range 10231018eVsuperscript1023superscript1018eV10^{-23}\!-\!10^{-18}\,{\rm eV}10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT roman_eV Blas:2019hxz ; Armaleo:2019gil ; LopezNacir:2018epg ; Blas:2016ddr . Finally, non-observation of superradiance in rapidly spinning supermassive black holes (SMBHs) can explore the 1020.51016.7eVsuperscript1020.5superscript1016.7eV10^{-20.5}\!-\!10^{-16.7}\,{\rm eV}10 start_POSTSUPERSCRIPT - 20.5 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 16.7 end_POSTSUPERSCRIPT roman_eV range Unal:2020jiy . With all of the above, the mass range 10261023eVsuperscript1026superscript1023eV10^{-26}\!-\!10^{-23}\,{\rm eV}10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV still remains relatively unexplored.

In this Letter , we show that current data from the International Pulsar-Timing Array (IPTA) Manchester:2013ndt ; Verbiest:2016vem , a collaboration between NANOGRAV NANOGrav:2015aud , PPTA Manchester:2012za and EPTA Lentati:2015qwp can be used to probe the ultralight boson energy density fraction ULDMsubscriptULDM{\cal F}_{\rm ULDM}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT in the 10261023eVsuperscript1026superscript1023eV10^{-26}\!-\!10^{-23}\,{\rm eV}10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV mass range with about 1-10% precision. The bounds remarkably extend to the smaller masses (lower frequencies) in this window, since the strength of the ultralight particle signal changes comparable to the PTA sensitivity curve. Therefore, smaller mass particles can be efficiently constrained by current IPTA data down to frequencies corresponding to 1/Dpulsar1/kpcsimilar-to1subscript𝐷pulsar1kpc1/D_{\rm pulsar}\!\sim\!1/{\rm kpc}1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ∼ 1 / roman_kpc (where Dpulsarsubscript𝐷pulsarD_{\rm pulsar}italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT is the distance to the pulsar, and we set the speed of light c=1𝑐1c=1italic_c = 1). Extending the observation period up to 30 years can improve these constraints by one order of magnitude, and with future PTA experiments, such as SKA Weltman:2018zrl , by two more orders of magnitude. Combined with CMB/LSS, Lyman-α𝛼\alphaitalic_α and SMBH superradiance constraints, the discovery potential of PTAs implies that ultralight bosons can be probed continuously throughout the mass range 10301017superscript1030superscript101710^{-30}\!-\!10^{-17}10 start_POSTSUPERSCRIPT - 30 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 17 end_POSTSUPERSCRIPT eV with 𝒪(1)%similar-toabsent𝒪percent1\sim{\cal O}(1)\%∼ caligraphic_O ( 1 ) % precision (see Hlozek:2016lzm ; Safarzadeh:2019sre ; Dentler:2021zij ; Flitter:2022pzf ; Libanore:2022ntl ; Sun:2021yra ).

We start with the signature of ultralight dark matter in PTAs. Free scalar/axion-like degrees of freedom, ϕitalic-ϕ\phiitalic_ϕ, with a canonical kinetic term have a Lagrangian density =12(μϕ)212m2ϕ212superscriptsubscript𝜇italic-ϕ212superscript𝑚2superscriptitalic-ϕ2{\cal L}=\frac{1}{2}(\partial_{\mu}\phi)^{2}-\frac{1}{2}m^{2}\phi^{2}caligraphic_L = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ϕ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. If such particles are non-relativistic, then the field configuration is given by a plane wave of nearly single frequency with corrections up to the kinetic term, which is about 106superscript10610^{-6}10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT times smaller compared to the rest mass. If we neglect the expansion of the background, ϕ=𝒜(x)cos(mt+β)italic-ϕ𝒜𝑥𝑚𝑡𝛽\phi\!=\!{\cal A}(x)\,\cos(mt+\beta)italic_ϕ = caligraphic_A ( italic_x ) roman_cos ( italic_m italic_t + italic_β ). The energy density is nearly time independent, ρ=ϕ˙2/2+V12m2𝒜2𝜌superscript˙italic-ϕ22𝑉similar-to-or-equals12superscript𝑚2superscript𝒜2\rho=\dot{\phi}^{2}/2+V\simeq\frac{1}{2}m^{2}{\cal A}^{2}italic_ρ = over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 + italic_V ≃ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and the pressure oscillates with angular frequency twice the mass of the particle, i.e. p=ϕ˙2/2Vρcos(2πft+2β)𝑝superscript˙italic-ϕ22𝑉similar-to-or-equals𝜌2𝜋𝑓𝑡2𝛽p=\dot{\phi}^{2}/2-V\simeq\rho\cdot\cos(2\pi ft+2\beta)italic_p = over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 - italic_V ≃ italic_ρ ⋅ roman_cos ( 2 italic_π italic_f italic_t + 2 italic_β ), where f𝑓fitalic_f is the oscillation frequency that can be computed using the corresponding mass as 2πf=w=2m2𝜋𝑓𝑤2𝑚2\pi f=w=2m2 italic_π italic_f = italic_w = 2 italic_m, and β𝛽\betaitalic_β is a phase. Hence,

f=5109Hz(m1023eV).𝑓5superscript109Hz𝑚superscript1023eVf=5\cdot 10^{-9}{\rm Hz}\left(\frac{m}{10^{-23}\,{\rm eV}}\right).italic_f = 5 ⋅ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT roman_Hz ( divide start_ARG italic_m end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV end_ARG ) . (1)

Then, solving the 00 and ii components of Einstein’s equations at first order, with the following metric perturbations: δg00=2Φ𝛿subscript𝑔002Φ\delta g_{00}=-2\Phiitalic_δ italic_g start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = - 2 roman_Φ and δgij=2ψδij𝛿subscript𝑔𝑖𝑗2𝜓subscript𝛿𝑖𝑗\delta g_{ij}=2\psi\delta_{ij}italic_δ italic_g start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = 2 italic_ψ italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, one ends up with ψ=ψ0(x)+π2GN𝒜2cos(2mt+2β)=ψ0(x)+πGNρ/m2cos(2mt+2β)𝜓subscript𝜓0𝑥𝜋2subscript𝐺𝑁superscript𝒜22𝑚𝑡2𝛽subscript𝜓0𝑥𝜋subscript𝐺𝑁𝜌superscript𝑚22𝑚𝑡2𝛽\psi=\psi_{0}(x)+\frac{\pi}{2}G_{N}{\cal A}^{2}\cos(2mt+2\beta)=\psi_{0}(x)+% \pi G_{N}\rho/m^{2}\cos(2mt+2\beta)italic_ψ = italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) + divide start_ARG italic_π end_ARG start_ARG 2 end_ARG italic_G start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT caligraphic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos ( 2 italic_m italic_t + 2 italic_β ) = italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) + italic_π italic_G start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_ρ / italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos ( 2 italic_m italic_t + 2 italic_β ), the second term being the oscillating piece defined as ψc=πGNρ/m2subscript𝜓𝑐𝜋subscript𝐺𝑁𝜌superscript𝑚2\psi_{c}\!=\!\pi G_{N}\rho/m^{2}italic_ψ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = italic_π italic_G start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_ρ / italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The time residual can be calculated via the fractional frequency shift as

δΔt=tptνν¯ν¯𝑑t,𝛿Δ𝑡superscriptsubscriptsubscript𝑡𝑝𝑡superscript𝜈¯𝜈¯𝜈differential-d𝑡\delta\Delta t=\int_{t_{p}}^{t}\frac{\nu^{\prime}-{\bar{\nu}}}{{\bar{\nu}}}dt,italic_δ roman_Δ italic_t = ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT divide start_ARG italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - over¯ start_ARG italic_ν end_ARG end_ARG start_ARG over¯ start_ARG italic_ν end_ARG end_ARG italic_d italic_t , (2)

where t𝑡titalic_t and tpsubscript𝑡𝑝t_{p}italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are the time at Earth and pulsar emission, and the fractional change in the frequency is given by

νν¯ν¯=ψ(x,t)ψ(xp,tp)tptnii(Φ+ψ)dt,superscript𝜈¯𝜈¯𝜈𝜓𝑥𝑡𝜓subscript𝑥𝑝subscript𝑡𝑝superscriptsubscriptsubscript𝑡𝑝𝑡subscript𝑛𝑖subscript𝑖Φ𝜓𝑑superscript𝑡\frac{\nu^{\prime}-{\bar{\nu}}}{{\bar{\nu}}}=\psi(x,t)-\psi(x_{p},t_{p})-\int_% {t_{p}}^{t}n_{i}\partial_{i}(\Phi+\psi)dt^{\prime},divide start_ARG italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - over¯ start_ARG italic_ν end_ARG end_ARG start_ARG over¯ start_ARG italic_ν end_ARG end_ARG = italic_ψ ( italic_x , italic_t ) - italic_ψ ( italic_x start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( roman_Φ + italic_ψ ) italic_d italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , (3)

where the first term is the difference in the gravitational potential and the second term is the change of its gradient during propagation, which is suppressed by a factor k/m𝑘𝑚k/mitalic_k / italic_m. Now, plugging Eq. (3) into Eq. (2), we get the expression

δΔt𝛿Δ𝑡\displaystyle\delta\Delta titalic_δ roman_Δ italic_t =\displaystyle== ψcmsin(mDpulsar+βeβp)×\displaystyle\frac{\psi_{c}}{m}\sin(mD_{\rm pulsar}+\beta_{e}-\beta_{p})\timesdivide start_ARG italic_ψ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_m end_ARG roman_sin ( italic_m italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) × (4)
×cos(2mtmDpulsar+βe+βp).absent2𝑚𝑡𝑚subscript𝐷pulsarsubscript𝛽𝑒subscript𝛽𝑝\displaystyle\times\cos(2mt-mD_{\rm pulsar}+\beta_{e}+\beta_{p}).× roman_cos ( 2 italic_m italic_t - italic_m italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) .

where βesubscript𝛽𝑒\beta_{e}italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT and βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT corresponds to phase values at the Earth and at the individual pulsar. The typical amplitude for the residual oscillating signal is the root-mean-square (rms) path average which is given by111For simplicity, we assume that for cross-correlation of signals from two different pulsars, this factorizes as 𝒫(L1)𝒫(L2)𝒫subscript𝐿1𝒫subscript𝐿2{\cal P}(L_{1}){\cal P}(L_{2})caligraphic_P ( italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) caligraphic_P ( italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) where L1subscript𝐿1L_{1}italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are the Earth-pulsar distances for pulsar 1 and 2.

(δΔt)2=1L0L𝑑l(δΔt)2=𝒫ψc/m,delimited-⟨⟩superscript𝛿Δ𝑡21𝐿superscriptsubscript0𝐿differential-d𝑙superscript𝛿Δ𝑡2𝒫subscript𝜓𝑐𝑚\sqrt{\langle(\delta\Delta t)^{2}\rangle}=\sqrt{\frac{1}{L}\int_{0}^{L}dl\,(% \delta\Delta t)^{2}}={\cal P}\cdot\psi_{c}/m,square-root start_ARG ⟨ ( italic_δ roman_Δ italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ end_ARG = square-root start_ARG divide start_ARG 1 end_ARG start_ARG italic_L end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_d italic_l ( italic_δ roman_Δ italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = caligraphic_P ⋅ italic_ψ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT / italic_m , (5)

where LDpulsar𝐿subscript𝐷pulsarL\equiv D_{\rm pulsar}italic_L ≡ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT and 𝒫𝒫{\cal P}caligraphic_P is defined as

𝒫=12(1sin(2mL)2mL)12𝒫12superscript12𝑚𝐿2𝑚𝐿12\displaystyle\!\!\!\!{\cal P}=\frac{1}{\sqrt{2}}\left(1-\frac{\sin(2\,m\,L)}{2% \,m\,L}\right)^{\frac{1}{2}}\!\!\,\,caligraphic_P = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( 1 - divide start_ARG roman_sin ( 2 italic_m italic_L ) end_ARG start_ARG 2 italic_m italic_L end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (6)

In the case where mDpulsar>1𝑚subscript𝐷pulsar1m\cdot D_{\rm pulsar}>1italic_m ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT > 1 we have 𝒫1similar-to-or-equals𝒫1{\cal P}\simeq 1caligraphic_P ≃ 1. However, in the limit mDpulsar1much-less-than𝑚subscript𝐷pulsar1m\cdot D_{\rm pulsar}\ll 1italic_m ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ≪ 1, we have extra suppression factor in the signal, of approximately mDpulsar𝑚subscript𝐷pulsarm\,D_{\rm pulsar}italic_m italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT.

The oscillations in the energy-momentum tensor will cause oscillations in the gravitational potential which correspond to an equivalent characteristic strain hc=23ψcsubscript𝑐23subscript𝜓𝑐h_{c}=2\sqrt{3}\psi_{c}italic_h start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 2 square-root start_ARG 3 end_ARG italic_ψ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, stressing that this is not GW signal. A similar analysis can be done for vector and tensor fields. For the massive spin-1 case, i.e. a massive dark photon, the field has 2 transverse and 1 longitudinal polarizations. For the spin-2 case, i.e. tensor, the field has 1 scalar, 2 transverse and 2 transverse-traceless polarizations (for subluminal gravitational waves Qin:2020hfy ). These polarizations are of similar order-of-magnitude in strength. Although there will be accompanying polarizations, the distinctive modes will be transverse polarization for a vector field and transverse-traceless polarization for a tensor field, and so we will conduct our analysis for the detectability of these specific polarizations. The signal from a single pulsar corresponding to the scalar Khmelnitsky:2013lxt , vector Nomura:2019cvc and tensor Armaleo:2020yml dark matter scenarios can be estimated as

hc,scalar21015𝒫ULDM(5nHzf)2similar-to-or-equalssubscript𝑐scalar2superscript1015𝒫subscriptULDMsuperscript5nHz𝑓2\displaystyle\!\!\!\!\!\!\!\!h_{c,\,{\rm scalar}}\simeq 2\cdot 10^{-15}\cdot{% \cal P}\cdot{\cal F}_{\rm ULDM}\left(\frac{5{\rm nHz}}{f}\right)^{2}\,italic_h start_POSTSUBSCRIPT italic_c , roman_scalar end_POSTSUBSCRIPT ≃ 2 ⋅ 10 start_POSTSUPERSCRIPT - 15 end_POSTSUPERSCRIPT ⋅ caligraphic_P ⋅ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ( divide start_ARG 5 roman_n roman_H roman_z end_ARG start_ARG italic_f end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
hc,vector61015𝒫ULDM(5nHzf)2similar-to-or-equalssubscript𝑐vector6superscript1015𝒫subscriptULDMsuperscript5nHz𝑓2\displaystyle\!\!\!\!\!\!\!\!h_{c,\,{\rm vector}}\simeq 6\cdot 10^{-15}\cdot{% \cal P}\cdot{\cal F}_{\rm ULDM}\left(\frac{5{\rm nHz}}{f}\right)^{2}\,italic_h start_POSTSUBSCRIPT italic_c , roman_vector end_POSTSUBSCRIPT ≃ 6 ⋅ 10 start_POSTSUPERSCRIPT - 15 end_POSTSUPERSCRIPT ⋅ caligraphic_P ⋅ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ( divide start_ARG 5 roman_n roman_H roman_z end_ARG start_ARG italic_f end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
hc,tensor,α51015𝒫ULDM1/2(5nHzf)(α107)similar-to-or-equalssubscript𝑐tensor𝛼5superscript1015𝒫subscriptsuperscript12ULDM5nHz𝑓𝛼superscript107\displaystyle\!\!\!\!\!\!\!\!h_{c,{\rm tensor},\,\alpha}\simeq 5\cdot 10^{-15}% \cdot{\cal P}\cdot{\cal F}^{1/2}_{\rm ULDM}\,\,\left(\frac{5{\rm nHz}}{f}% \right)\left(\frac{\alpha}{10^{-7}}\right)\;\;\;italic_h start_POSTSUBSCRIPT italic_c , roman_tensor , italic_α end_POSTSUBSCRIPT ≃ 5 ⋅ 10 start_POSTSUPERSCRIPT - 15 end_POSTSUPERSCRIPT ⋅ caligraphic_P ⋅ caligraphic_F start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ( divide start_ARG 5 roman_n roman_H roman_z end_ARG start_ARG italic_f end_ARG ) ( divide start_ARG italic_α end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT end_ARG ) (7)

where ULDM(ρULDM0.4GeV/cm3)subscriptULDMsubscript𝜌ULDM0.4𝐺𝑒𝑉𝑐superscript𝑚3{\cal F}_{\rm ULDM}\equiv(\frac{\rho_{\rm ULDM}}{0.4\,GeV/cm^{3}})caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ≡ ( divide start_ARG italic_ρ start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT end_ARG start_ARG 0.4 italic_G italic_e italic_V / italic_c italic_m start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) is the fraction of ultralight dark matter (ULDM) in the local Universe and α𝛼\alphaitalic_α is the spin-2 universal coupling to matter.

A number of comments are in order. First, the signal suppression from propagation is important, since with the corresponding modification the signal strain grows more slowly than the red-noise strain and as a result the signal-to-noise diminishes for frequencies smaller than inverse pulsar distance, i.e. f<1/Dpulsar𝑓1subscript𝐷pulsarf<1/D_{\rm pulsar}italic_f < 1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT, see Fig. 1.

Secondly, the tensor case is special in the sense that the only known viable massive spin-2 theory, bigravity, includes a universal direct coupling term to matter with strength α𝛼\alphaitalic_α that cannot be tuned away. Because of this, the signal from the massive tensor field is proportional to f1superscript𝑓1f^{-1}italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT instead of f2superscript𝑓2f^{-2}italic_f start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT as in the scalar and vector cases Armaleo:2020yml . Therefore, in the tensor case the constraint is effectively on the combination α2ULDMsuperscript𝛼2subscriptULDM\alpha^{2}{\cal F}_{\rm ULDM}italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT 222This harder scaling is what makes it possible to potentially detect this kind of signal also at the much higher frequencies probed by gravitational wave interferometers Armaleo:2020efr ; Pierce:2018xmy ; LIGOScientificCollaborationVirgoCollaboration:2021eyz , see Fig. 3.,,{}^{,}\!\!start_FLOATSUPERSCRIPT , end_FLOATSUPERSCRIPT 333We note that the same f1superscript𝑓1f^{-1}italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT scaling also applies when spin-0 and spin-1 ULDM are directly coupled to matter hc,scalar,Λsubscript𝑐scalarΛ\displaystyle\!\!\!\!h_{c,\,{\rm scalar},\,\Lambda}italic_h start_POSTSUBSCRIPT italic_c , roman_scalar , roman_Λ end_POSTSUBSCRIPT 31018(v103)(1026GeVΛ)ULDM5nHzfsimilar-to-or-equalsabsent3superscript1018vsuperscript103superscript1026𝐺𝑒𝑉ΛsubscriptULDM5nHz𝑓\displaystyle\simeq 3\cdot 10^{-18}\left(\frac{{\rm v}}{10^{-3}}\right)\left(% \frac{10^{-26}\,GeV}{\Lambda}\right){\cal F}_{\rm ULDM}\,\frac{5{\rm nHz}}{f}≃ 3 ⋅ 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT ( divide start_ARG roman_v end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT italic_G italic_e italic_V end_ARG start_ARG roman_Λ end_ARG ) caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT divide start_ARG 5 roman_n roman_H roman_z end_ARG start_ARG italic_f end_ARG hc,vector,gcsubscript𝑐vectorgc\displaystyle\!\!\!\!h_{c,\,{\rm vector},\,{\rm gc}}italic_h start_POSTSUBSCRIPT italic_c , roman_vector , roman_gc end_POSTSUBSCRIPT 3.21013(g1024)ULDM5nHzfsimilar-to-or-equalsabsent3.2superscript1013gsuperscript1024subscriptULDM5nHz𝑓\displaystyle\simeq 3.2\cdot 10^{-13}\left(\frac{{\rm g}}{10^{-24}}\right)\,{% \cal F}_{\rm ULDM}\,\frac{5{\rm nHz}}{f}≃ 3.2 ⋅ 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT ( divide start_ARG roman_g end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 24 end_POSTSUPERSCRIPT end_ARG ) caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT divide start_ARG 5 roman_n roman_H roman_z end_ARG start_ARG italic_f end_ARG (8) where ΛΛ\Lambdaroman_Λ is a cutoff, and ”g” denotes the coupling constant. The interaction Lagrangian that defines the coupling constants quoted above is =M(1+ϕ(t)Λ)(1+v22)+qviAi(t)+αM2MPMij(t)vivj,subscript𝑀direct-sum1italic-ϕ𝑡Λ1superscript𝑣22𝑞subscript𝑣𝑖superscript𝐴𝑖𝑡𝛼subscript𝑀direct-sum2subscript𝑀𝑃subscript𝑀𝑖𝑗𝑡superscript𝑣𝑖superscript𝑣𝑗{\cal L}=M_{\oplus}\left(1+\frac{\phi(t)}{\Lambda}\right)\,\left(1+\frac{v^{2}% }{2}\right)+qv_{i}A^{i}(t)+\frac{\alpha M_{\oplus}}{2M_{P}}M_{ij}(t)v^{i}v^{j}\,,caligraphic_L = italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT ( 1 + divide start_ARG italic_ϕ ( italic_t ) end_ARG start_ARG roman_Λ end_ARG ) ( 1 + divide start_ARG italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ) + italic_q italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( italic_t ) + divide start_ARG italic_α italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT end_ARG italic_M start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ) italic_v start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT , (9) where the spin-0, spin-1 and spin-2 fields are ϕ(t)italic-ϕ𝑡\phi(t)italic_ϕ ( italic_t ), Ai(t)subscript𝐴𝑖𝑡A_{i}(t)italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) and Mij(t)subscript𝑀𝑖𝑗𝑡M_{ij}(t)italic_M start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ), respectively; Msubscript𝑀direct-sumM_{\oplus}italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT is the Earth’s mass and visubscript𝑣𝑖v_{i}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT the velocity of the solar-system barycenter quasi-inertial frame with respect to the ULDM frame, MPsubscript𝑀𝑃M_{P}italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT the reduced Planck mass, and q=gM/mn𝑞𝑔subscript𝑀direct-sumsubscript𝑚𝑛q=gM_{\oplus}/m_{n}italic_q = italic_g italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT / italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with mnsubscript𝑚𝑛m_{n}italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT the mass of the neutron and g𝑔gitalic_g the BL𝐵𝐿B-Litalic_B - italic_L or B𝐵Bitalic_B coupling constant. .

Refer to caption
Figure 1: Characteristic strain, hcsubscript𝑐h_{c}italic_h start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, for the signal in the case of scalar ultralight particles with ULDM=1subscriptULDM1{\cal F}_{\rm ULDM}=1caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT = 1, and for the noise with current PTAs (assuming 15 and 30 years of observation time Chen:2021rqp , for 60 and 90 pulsars) and with SKA (15 years with 5K pulsars), respectively. The effective noise curve is defined here as heffhnoise(2β2)1/4subscripteffsubscriptnoisesuperscript2superscriptsubscript𝛽214h_{\rm eff}\equiv h_{\rm noise}(2{\cal R}_{\beta}^{2})^{-1/4}italic_h start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ≡ italic_h start_POSTSUBSCRIPT roman_noise end_POSTSUBSCRIPT ( 2 caligraphic_R start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT. The signal, the PTA sensitivity and the detectability in three regimes separated by vertical dashed lines are discussed in detail in the text. Note that the signal grows comparable to the the noise in the regime 1/Dpulsar<f<1/Tobs1subscript𝐷pulsar𝑓1subscript𝑇obs1/D_{\rm pulsar}<f<1/T_{\rm obs}1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT < italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT, allowing for precision probing, and slower for f>1/Tobs𝑓1subscript𝑇obsf>1/T_{\rm obs}italic_f > 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT and f<1/Dpulsar𝑓1subscript𝐷pulsarf<1/D_{\rm pulsar}italic_f < 1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT.

Having described the three different types of signals we are after, we now turn to a discussion of the sensitivity of current and future PTAs. Although all ultralight particles generate pressure which leads to perturbations in the arrival time of pulsar signals, the type of perturbations are distinct from each other. Accordingly, PTAs have different response functions for scalar, vector and tensor fields. The variables typically used in the literature to indicate the strength of the signal: the characteristic strain hcsubscript𝑐h_{c}italic_h start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the power spectral density Shsubscript𝑆S_{h}italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT and the energy density ΩhsubscriptΩ\Omega_{h}roman_Ω start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT, are connected to each other as follows

H02Ω(f)=2π23f3Sh(f)=2π23f2hc2(f).superscriptsubscript𝐻02Ω𝑓2superscript𝜋23superscript𝑓3subscript𝑆𝑓2superscript𝜋23superscript𝑓2superscriptsubscript𝑐2𝑓H_{0}^{2}\,\Omega(f)=\frac{2\pi^{2}}{3}f^{3}S_{h}(f)=\frac{2\pi^{2}}{3}f^{2}h_% {c}^{2}(f).italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ω ( italic_f ) = divide start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_f ) = divide start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) . (10)

To estimate the detectability of the monochromatic signal, we start from the formula

SNR2=2(fTobs)2I=1NJ>INr(β)IJ2(Sh,signalSh,noise)2,superscriptSNR22superscript𝑓subscript𝑇obs2superscriptsubscript𝐼1𝑁superscriptsubscript𝐽𝐼𝑁superscriptsubscript𝑟𝛽𝐼𝐽2superscriptsubscript𝑆signalsubscript𝑆noise2\displaystyle\!\!\!\!\!\!\!{\rm SNR}^{2}=2\;(f\cdot T_{\rm obs})^{2}\sum_{I=1}% ^{N}\sum_{J>I}^{N}\;r_{(\beta)\;IJ}^{2}\;\left(\frac{S_{h,{\rm signal}}}{S_{h,% {\rm noise}}}\right)^{2},\,\,\,\,\,roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_I = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_J > italic_I end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT ( italic_β ) italic_I italic_J end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_S start_POSTSUBSCRIPT italic_h , roman_signal end_POSTSUBSCRIPT end_ARG start_ARG italic_S start_POSTSUBSCRIPT italic_h , roman_noise end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (11)

where Tobssubscript𝑇obsT_{\rm obs}italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT is the observation time, and I,J𝐼𝐽I,Jitalic_I , italic_J indicate two pulsars in each pair correlation, and r(β)IJ214π𝑑ΩχIJ2superscriptsubscript𝑟𝛽𝐼𝐽214𝜋differential-dΩsubscriptsuperscript𝜒2𝐼𝐽r_{(\beta){IJ}}^{2}\equiv\frac{1}{4\pi}\int d{\Omega}\;\chi^{2}_{IJ}italic_r start_POSTSUBSCRIPT ( italic_β ) italic_I italic_J end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≡ divide start_ARG 1 end_ARG start_ARG 4 italic_π end_ARG ∫ italic_d roman_Ω italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT, β𝛽\betaitalic_β=Scalar (S), Vector(V), Tensor(T), and N𝑁Nitalic_N is the total number of pulsars, assumed to have identical properties to derive an ensemble average. The explicit expressions for χIJsubscript𝜒𝐼𝐽\chi_{IJ}italic_χ start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT, the correlation coefficient between each pair of pulsars separated by an angle ζ𝜁\zetaitalic_ζ, for each β𝛽\betaitalic_β are Jenet:2014bea

S:χIJ=1,V:χIJ=13cosζ:Ssubscript𝜒𝐼𝐽1V:subscript𝜒𝐼𝐽13𝜁\displaystyle{\rm S}:\;\chi_{IJ}=1,~{}~{}~{}~{}~{}~{}~{}{\rm V}:\chi_{IJ}=% \frac{1}{3}\cos{\zeta}roman_S : italic_χ start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT = 1 , roman_V : italic_χ start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 3 end_ARG roman_cos italic_ζ
T:χIJ=1214(1cosζ2)(1+6ln(1cosζ2)):Tsubscript𝜒𝐼𝐽12141𝜁2161𝜁2\displaystyle{\rm T}:\chi_{IJ}=\frac{1}{2}-\frac{1}{4}\left(\frac{1-\cos{\zeta% }}{2}\right)\left(1+6\ln{\left(\frac{1-\cos{\zeta}}{2}\right)}\right)\,roman_T : italic_χ start_POSTSUBSCRIPT italic_I italic_J end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG - divide start_ARG 1 end_ARG start_ARG 4 end_ARG ( divide start_ARG 1 - roman_cos italic_ζ end_ARG start_ARG 2 end_ARG ) ( 1 + 6 roman_ln ( divide start_ARG 1 - roman_cos italic_ζ end_ARG start_ARG 2 end_ARG ) )

Defining β2I=1NJ>INr(β)IJ2subscriptsuperscript2𝛽superscriptsubscript𝐼1𝑁superscriptsubscript𝐽𝐼𝑁subscriptsuperscript𝑟2𝛽𝐼𝐽{\cal R}^{2}_{\beta}\equiv\sum_{I=1}^{N}\sum_{J>I}^{N}r^{2}_{(\beta)IJ}caligraphic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ≡ ∑ start_POSTSUBSCRIPT italic_I = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_J > italic_I end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ( italic_β ) italic_I italic_J end_POSTSUBSCRIPT, this yields

S2=N(N1)2,V2=N(N1)227,T2=N(N1)248.formulae-sequencesuperscriptsubscriptS2𝑁𝑁12formulae-sequencesuperscriptsubscriptV2𝑁𝑁1227superscriptsubscriptT2𝑁𝑁1248\!\!\!\!\!\!{\cal R}_{\rm S}^{2}=\frac{N\,(N-1)}{2},\;{\cal R}_{\rm V}^{2}=% \frac{N\,(N-1)}{2\cdot 27},\;{\cal R}_{\rm T}^{2}=\frac{N\,(N-1)}{2\cdot 48}.caligraphic_R start_POSTSUBSCRIPT roman_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_N ( italic_N - 1 ) end_ARG start_ARG 2 end_ARG , caligraphic_R start_POSTSUBSCRIPT roman_V end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_N ( italic_N - 1 ) end_ARG start_ARG 2 ⋅ 27 end_ARG , caligraphic_R start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_N ( italic_N - 1 ) end_ARG start_ARG 2 ⋅ 48 end_ARG . (12)

The PTA sensitivity curve can be described as

Sn=12π2f2𝒩𝒯=hn2/fsubscript𝑆𝑛12superscript𝜋2superscript𝑓2𝒩𝒯superscriptsubscript𝑛2𝑓S_{n}=12\pi^{2}f^{2}\,\frac{{\cal N}}{{\cal T}}=h_{n}^{2}/fitalic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 12 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG caligraphic_N end_ARG start_ARG caligraphic_T end_ARG = italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_f (13)

where 𝒯=((fTobs)31+(fTobs)3)2𝒯superscriptsuperscript𝑓subscript𝑇obs31superscript𝑓subscript𝑇obs32{\cal T}=\left(\frac{(f\cdot T_{\rm obs})^{3}}{1+(f\cdot T_{\rm obs})^{3}}% \right)^{2}caligraphic_T = ( divide start_ARG ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 1 + ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is the transmission function444 The transmission function in the limit f<1/Tobs𝑓1subscript𝑇obsf<1/T_{\rm obs}italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT accounts for the fact that fitting for the unknown pulsar period and period derivative is equivalent to keeping the transmission function fixed at 1 and expanding our signal up to cubic order, which then introduces the f3superscript𝑓3f^{3}italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT dependence to the signal., 𝒩=2σ2Δt+Prfγ𝒩2superscript𝜎2Δ𝑡subscript𝑃𝑟superscript𝑓𝛾{\cal N}=2\sigma^{2}\Delta t+P_{r}\,f^{-\gamma}caligraphic_N = 2 italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ italic_t + italic_P start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT - italic_γ end_POSTSUPERSCRIPT (white noise plus red noise which can be relevant for small frequencies). Snsubscript𝑆𝑛S_{n}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT varies between the different frequency ranges (see Fig. 1):

Refer to caption
Figure 2: Bounds on the fraction of a scalar ultralight boson component out of the total dark matter. We show existing constraints from CMB Hlozek:2014lca ; Poulin:2018dzj ; combined with BOSS Lague:2021frh ; reionization Bozek:2014uqa ; Lyman-α𝛼\alphaitalic_α Kobayashi:2017jcf ; Irsic:2017yje ; Armengaud:2017nkf ; Rogers:2020ltq ; Rogers:2020cup ; Eridanus-II Marsh:2018zyw ; galaxy rotation curves Bar:2021kti ; and SMBH superradiance Unal:2020jiy . Our forecasts for current PTA (future; 30 year PTA, and 15 year SKA) are shown in solid (dashed) blue.
  • I) f>1/Tobs𝑓1subscript𝑇obsf>1/T_{\rm obs}italic_f > 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT : The high frequency part of the sensitivity regime is controlled by white timing noise, whose expression is given as Sn(f)=12π2f2(2Δtσ2)=hn2/fsubscript𝑆𝑛𝑓12superscript𝜋2superscript𝑓22Δ𝑡superscript𝜎2superscriptsubscript𝑛2𝑓S_{n}(f)=12\pi^{2}f^{2}(2\Delta t\sigma^{2})=h_{n}^{2}/fitalic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_f ) = 12 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 roman_Δ italic_t italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_f. Here ΔtΔ𝑡\Delta troman_Δ italic_t is the timing period, and σ𝜎\sigmaitalic_σ is the rms error in timing residuals. This frequency regime has scaling hnf3/2proportional-tosubscript𝑛superscript𝑓32h_{n}\propto f^{3/2}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT, or equivalently Ωnf5proportional-tosubscriptΩ𝑛superscript𝑓5\Omega_{n}\propto f^{5}roman_Ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Thrane:2013oya ; Moore:2014lga ; Romano:2016dpx ; Vigeland:2016nmm .

  • II) f<1/Tobs𝑓1subscript𝑇obsf<1/T_{\rm obs}italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT: Here Snsubscript𝑆𝑛S_{n}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is set by three factors: (i) the transmission function, which accounts for the information absorbed by the timing model fit (we assume a quadratic spin-down model which fits for the pulsar phase offset, spin period and period derivative). In this regime, the transmission function scales as f6superscript𝑓6f^{-6}italic_f start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT and limits the detection capability  Hazboun:2019vhv . (ii) Measurement white noise, which is frequency-independent; (iii) Pulsar specific red noise Goncharov:2021oub , which is more effective at low frequencies Lam:2016iie (see also NANOGrav:2020bcs ; Goncharov:2020krd ). For simplicity, in making our forecast we will limit ourselves to a subset of pulsars for which, in the frequency regime we focus on, the red noise is subdominant compared to white noise. We assume that this holds for 1/4th of the total dataset (indeed, there are many such pulsars  Cordes:2010fh ; Lam:2016iie ; NANOGrav:2020bcs ; Goncharov:2020krd ; NANOGrav:2020qll ).

    When the frequency of the signal is less than 1/Tobs1subscript𝑇𝑜𝑏𝑠1/T_{obs}1 / italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT, there are two ways to do the analysis: i) One can keep the white noise fixed and expand the signal in a Taylor series. Then, the first two expansion terms are absorbed by the period and period derivative terms due to the lack of an independent measurement of these parameters, hence we are only left at the next order with the cubic term. Keeping the noise fixed, we therefore have an extra m3/T3f3/T3similar-tosuperscript𝑚3superscript𝑇3superscript𝑓3superscript𝑇3m^{3}/T^{3}\sim f^{3}/T^{3}italic_m start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∼ italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT suppression. ii) One can keep the signal the same, but then the response will include again the ambiguity in period and period derivative, hence one can modify the definition of the noise via the transfer function Hazboun:2019vhv . The strain transfer function is unity for frequencies larger than inverse observation time (f>1/Tobs𝑓1subscript𝑇𝑜𝑏𝑠f>1/T_{obs}italic_f > 1 / italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT), on the other hand, and it is f3superscript𝑓3f^{-3}italic_f start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT at low frequencies (f>1/Tobs𝑓1subscript𝑇𝑜𝑏𝑠f>1/T_{obs}italic_f > 1 / italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT). The transfer function for power spectral amplitude is quadratic in the strain, hence they have f6superscript𝑓6f^{-6}italic_f start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. Red noise makes the sensitivity worse on top of this white noise curve.

The noise curve for a generic single pulsar is parametrized as in Ref. Unal:2020mts , consistent with both simulated curves Hazboun:2019vhv and data NANOGrav:2020qll

hc,noisesubscript𝑐noise\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!h_{c,{\rm noise}}italic_h start_POSTSUBSCRIPT italic_c , roman_noise end_POSTSUBSCRIPT =\displaystyle== fSn=12π2f3(𝒩/𝒯)1014×\displaystyle\sqrt{f\cdot S_{n}}=\sqrt{12\pi^{2}f^{3}\,({\cal N}/{\cal T})}% \simeq 10^{-14}\timessquare-root start_ARG italic_f ⋅ italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG = square-root start_ARG 12 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_N / caligraphic_T ) end_ARG ≃ 10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT × (14)
×\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!% \!\!\!\!\!\!\!\!\!\!\times× Δt14dσμs2Tobs,15yr3(ξfrac(fTobs)3/2+(fTobs)3/2)Δsubscript𝑡14𝑑subscriptsuperscript𝜎2𝜇𝑠superscriptsubscript𝑇obs15yr3subscript𝜉fracsuperscript𝑓subscript𝑇obs32superscript𝑓subscript𝑇obs32\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\sqrt{\frac{% \Delta t_{14d}\;\sigma^{2}_{\mu s}}{{T_{\rm obs,15yr}^{3}}}}\;\left(\xi_{\rm frac% }\cdot\left(f\cdot T_{\rm obs}\right)^{-3/2}+\left(f\cdot T_{\rm obs}\right)^{% 3/2}\right)square-root start_ARG divide start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 14 italic_d end_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_μ italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_T start_POSTSUBSCRIPT roman_obs , 15 roman_y roman_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG end_ARG ( italic_ξ start_POSTSUBSCRIPT roman_frac end_POSTSUBSCRIPT ⋅ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT + ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT )

where Tobs,15yr=Tobs/15yrsubscript𝑇obs15yrsubscript𝑇obs15yrT_{\rm obs,15yr}=T_{\rm obs}/15{\rm yr}italic_T start_POSTSUBSCRIPT roman_obs , 15 roman_y roman_r end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT / 15 roman_y roman_r is scaled observation time, Δt14d=Δt14daysΔsubscript𝑡14𝑑Δ𝑡14days\Delta t_{14d}=\frac{\Delta t}{14{\rm days}}roman_Δ italic_t start_POSTSUBSCRIPT 14 italic_d end_POSTSUBSCRIPT = divide start_ARG roman_Δ italic_t end_ARG start_ARG 14 roman_d roman_a roman_y roman_s end_ARG is cadence, σμs=σμsecsubscript𝜎𝜇𝑠𝜎𝜇sec\sigma_{\mu s}=\frac{\sigma}{{\rm\mu sec}}italic_σ start_POSTSUBSCRIPT italic_μ italic_s end_POSTSUBSCRIPT = divide start_ARG italic_σ end_ARG start_ARG italic_μ roman_sec end_ARG is rms signal error , ξfracsubscript𝜉frac\xi_{\rm frac}italic_ξ start_POSTSUBSCRIPT roman_frac end_POSTSUBSCRIPT is the inverse of the square-root of the fraction of pulsars where red noise is subdominant compared to white noise. We take 1/4th of the pulsars to be white-noise dominated in the regime we focus on, so ξfrac=2subscript𝜉𝑓𝑟𝑎𝑐2\xi_{frac}=2italic_ξ start_POSTSUBSCRIPT italic_f italic_r italic_a italic_c end_POSTSUBSCRIPT = 2 in this study. We emphasize that Eq. (14) is a generic result for PTAs, hence plugging in distinct timing errors or observation periods, one can produce approximate sensitivity curves. The scalings correspond to current PTA experiments, namely the rms timing error is normalized for μs𝜇s{\rm\mu s}italic_μ roman_s. The next generation SKA experiment is expected to improve this result by an order of magnitude, i.e. to 30ns30ns30\,{\rm ns}30 roman_ns. Moreover, the number of observed pulsars with SKA will be about two orders of magnitude larger than the current PTA pulsar number Smits:2008cf . Combined, these two effects will improve the sensitivity of SKA by roughly two orders of magnitude, as shown in Fig. 1.

To proceed, we plug Eq. (7) into Eq. (11), using our source is monochromatic, with fsubscript𝑓f_{*}italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT given in Eq. (1)

SNR2superscriptSNR2\displaystyle{\rm SNR}^{2}roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT similar-to-or-equals\displaystyle\simeq 2(fTobs)2β2(hc,signalhc,noise)4|f=f,evaluated-at2superscriptsubscript𝑓subscript𝑇obs2subscriptsuperscript2𝛽superscriptsubscript𝑐signalsubscript𝑐noise4𝑓subscript𝑓\displaystyle 2\,(f_{*}\cdot T_{\rm obs})^{2}\;{\cal R}^{2}_{\beta}\;\left(% \frac{h_{c,{\rm signal}}}{h_{c,{\rm noise}}}\right)^{4}\bigg{|}_{f=f_{*}}\;,2 ( italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , roman_signal end_POSTSUBSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , roman_noise end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT | start_POSTSUBSCRIPT italic_f = italic_f start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT , (15)

where β2subscriptsuperscript2𝛽{\cal R}^{2}_{\beta}caligraphic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT is the response given to different spin fields, i.e. scalar, vector and tensor, given in Eq. (12). With this result in hand, we are equipped with all the required items to compute the sensitivity of current and future PTA experiments to large portions of the parameter space of ULDM particles of each distinct nature (scalar, vector and tensor). Our results are shown in Figs. 2, and 3.

Refer to caption
Figure 3: Zoomed in for scalar, vector (dark photon) and tensor (spin-2) (setting α=107,NpPTA=60,NpSKA=5Kformulae-sequence𝛼superscript107formulae-sequencesuperscriptsubscript𝑁𝑝𝑃𝑇𝐴60superscriptsubscript𝑁𝑝𝑆𝐾𝐴5𝐾\alpha\!=\!10^{-7},N_{p}^{PTA}=60,N_{p}^{SKA}=5Kitalic_α = 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT , italic_N start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P italic_T italic_A end_POSTSUPERSCRIPT = 60 , italic_N start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S italic_K italic_A end_POSTSUPERSCRIPT = 5 italic_K, and 15 years of observation time for both).

To provide intuition for the results, we now discuss in detail the capabilities of PTAs to probe ULDM by focusing on the scaling properties of the signal and noise in each separate frequency regime in Figs. 12 and 3 by assuming conservative noise curve.

  • a) f>1/Tobs𝑓1subscript𝑇obsf>1/T_{\rm obs}italic_f > 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT : For scalar and vectors we have hsignalf2proportional-tosubscriptsignalsuperscript𝑓2h_{\rm signal}\propto f^{-2}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, while for tensor(spin-2) hsignalf1proportional-tosubscriptsignalsuperscript𝑓1h_{\rm signal}\propto f^{-1}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT; and hnoisef3/2proportional-tosubscriptnoisesuperscript𝑓32h_{\rm noise}\propto f^{3/2}italic_h start_POSTSUBSCRIPT roman_noise end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT.

    S,V𝑆𝑉\displaystyle S,Vitalic_S , italic_V ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 4(fTobs)12proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM4superscript𝑓subscript𝑇obs12\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,4}\;(f\cdot T_{\rm obs})^{-12}roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT
    T𝑇\displaystyle Titalic_T ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 2(fTobs)8proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM2superscript𝑓subscript𝑇obs8\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,2}\;(f\cdot T_{\rm obs})^{-8}\;\;\;\;% \;\;\;\;\;\;roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT (16)

    The fraction of dark matter we can probe scales as ULDM(fTobs)3proportional-tosubscriptULDMsuperscript𝑓subscript𝑇obs3{\cal F}_{\rm ULDM}\propto(f\cdot T_{\rm obs})^{3}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT for scalar and vector, and ULDM(fTobs)4proportional-tosubscriptULDMsuperscript𝑓subscript𝑇obs4{\cal F}_{\rm ULDM}\propto(f\cdot T_{\rm obs})^{4}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT for tensor. This is the regime for masses larger than 1023eVsuperscript1023eV10^{-23}\,{\rm eV}10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV.

  • b) 1/Dpulsar<f<1/Tobs1subscript𝐷pulsar𝑓1subscript𝑇obs1/D_{\rm pulsar}<f<1/T_{\rm obs}1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT < italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT: For scalar and vectors we have hsignalf2proportional-tosubscriptsignalsuperscript𝑓2h_{\rm signal}\propto f^{-2}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, while for tensor hsignalf1proportional-tosubscriptsignalsuperscript𝑓1h_{\rm signal}\propto f^{-1}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT; and hnoisef3/2proportional-tosubscriptnoisesuperscript𝑓32h_{\rm noise}\propto f^{-3/2}italic_h start_POSTSUBSCRIPT roman_noise end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT.

    S,V𝑆𝑉\displaystyle S,Vitalic_S , italic_V ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 4(fTobs)0proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM4superscript𝑓subscript𝑇obs0\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,4}\;(f\cdot T_{\rm obs})^{0}roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT
    T𝑇\displaystyle Titalic_T ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 2(fTobs)4proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM2superscript𝑓subscript𝑇obs4\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,2}\;(f\cdot T_{\rm obs})^{4}\;\;\;\;\;% \;\;\;\;\;roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT (17)

    For scalars and vectors, in the f<1/Tobs𝑓1subscript𝑇obsf<1/T_{\rm obs}italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT regime, the signal grows slightly faster than noise, which results in ULDM(fTobs)0proportional-tosubscriptULDMsuperscript𝑓subscript𝑇obs0{\cal F}_{\rm ULDM}\propto(f\cdot T_{\rm obs})^{0}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. In the tensor case, we have ULDM(fTobs)2proportional-tosubscriptULDMsuperscript𝑓subscript𝑇obs2{\cal F}_{\rm ULDM}\propto(f\cdot T_{\rm obs})^{-2}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT. Depending on Tobssubscript𝑇obsT_{\rm obs}italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT of the PTA, this regime typically lies between m1026eVsimilar-to𝑚superscript1026eVm\sim 10^{-26}\,{\rm eV}italic_m ∼ 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT roman_eV and m1023eVsimilar-to𝑚superscript1023eVm\sim 10^{-23}\,{\rm eV}italic_m ∼ 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV.

  • c) f<1/Dpulsar𝑓1subscript𝐷pulsarf<1/D_{\rm pulsar}italic_f < 1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT: For scalar and vectors hsignalf1proportional-tosubscriptsignalsuperscript𝑓1h_{\rm signal}\propto f^{-1}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, while for tensor hsignalf0proportional-tosubscriptsignalsuperscript𝑓0h_{\rm signal}\propto f^{0}italic_h start_POSTSUBSCRIPT roman_signal end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT; and hnoisef3/2proportional-tosubscriptnoisesuperscript𝑓32h_{\rm noise}\propto f^{-3/2}italic_h start_POSTSUBSCRIPT roman_noise end_POSTSUBSCRIPT ∝ italic_f start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT.

    S,V𝑆𝑉\displaystyle S,Vitalic_S , italic_V ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 4(fDpulsar)4proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM4superscript𝑓subscript𝐷pulsar4\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,4}\;(f\cdot D_{\rm pulsar})^{4}roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT
    T𝑇\displaystyle Titalic_T ::\displaystyle:: SNR2(fTobs)2hc,s4hc,n4ULDM 2(fDpulsar)8proportional-tosuperscriptSNR2superscript𝑓subscript𝑇𝑜𝑏𝑠2superscriptsubscript𝑐𝑠4superscriptsubscript𝑐𝑛4proportional-tosuperscriptsubscriptULDM2superscript𝑓subscript𝐷pulsar8\displaystyle\;{\rm SNR}^{2}\propto(f\cdot T_{obs})^{2}\,\frac{h_{c,s}^{4}}{h_% {c,n}^{4}}\propto{\cal F}_{\rm ULDM}^{\,2}\;(f\cdot D_{\rm pulsar})^{8}\;\;\;% \;\;\;\;\;roman_SNR start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ( italic_f ⋅ italic_T start_POSTSUBSCRIPT italic_o italic_b italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT italic_c , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∝ caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT (18)

    In the regime f<1/Dpulsar𝑓1subscript𝐷𝑝𝑢𝑙𝑠𝑎𝑟f<1/D_{pulsar}italic_f < 1 / italic_D start_POSTSUBSCRIPT italic_p italic_u italic_l italic_s italic_a italic_r end_POSTSUBSCRIPT, the SNRSNR{\rm SNR}roman_SNR decreases for scalar, vector and tensor. The fraction of dark matter that can be probed scales as ULDM(fDpulsar)1proportional-tosubscriptULDMsuperscript𝑓subscript𝐷pulsar1{\cal F}_{\rm ULDM}\propto(f\cdot D_{\rm pulsar})^{-1}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for scalar and vector; and ULDM(fDpulsar)4proportional-tosubscriptULDMsuperscript𝑓subscript𝐷pulsar4{\cal F}_{\rm ULDM}\propto(f\cdot D_{\rm pulsar})^{-4}caligraphic_F start_POSTSUBSCRIPT roman_ULDM end_POSTSUBSCRIPT ∝ ( italic_f ⋅ italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT for tensor. Depending on the pulsar distance Dpulsarsubscript𝐷pulsarD_{\rm pulsar}italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT, this is typically the regime where m1026less-than-or-similar-to𝑚superscript1026m\lesssim 10^{-26}italic_m ≲ 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPTeV.

To conclude, our results indicate that current as well as future PTAs can probe ultralight bosons of scalar, vector (dark photon) and tensor (spin-2) types with excellent precision. The mass range 10261023eVsuperscript1026superscript1023eV10^{-26}-10^{-23}\,{\rm eV}10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV is especially interesting since CMB and large-scale structure experiments have less sensitivity in that regime, and in contrast PTAs have the most sensitivity there, so that we can close this gap, as shown in Fig. 2 and 3. Crucially, this mass range roughly corresponds to the frequency regime 1/Dpulsar<f<1/Tobs1subscript𝐷pulsar𝑓1subscript𝑇obs1/D_{\rm pulsar}\!<\!f\!<\!1/T_{\rm obs}1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT < italic_f < 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT, where the signal stays strong compared to the noise. Therefore, smaller mass particles (in the scalar and vector scenarios) can be tightly constrained until frequencies f1/Dpulsarsimilar-to𝑓1subscript𝐷pulsarf\!\sim\!1/D_{\rm pulsar}italic_f ∼ 1 / italic_D start_POSTSUBSCRIPT roman_pulsar end_POSTSUBSCRIPT. For tensor particles, the potential oscillations scale with 1/f1𝑓1/f1 / italic_f, hence the best regime to probe them is around f1/Tobssimilar-to𝑓1subscript𝑇obsf\!\sim\!1/T_{\rm obs}italic_f ∼ 1 / italic_T start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT.

Our calculations show that with current PTA data, the abundance of ultralight bosons in the mass range 10261023eVsuperscript1026superscript1023eV10^{-26}-10^{-23}\,{\rm eV}10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 23 end_POSTSUPERSCRIPT roman_eV can be probed down to 𝒪(110)%𝒪percent110{\cal O}(1-10)\%caligraphic_O ( 1 - 10 ) % of the total dark matter energy density. We also found that with 30 year PTA data, the precision improves by about one order of magnitude to 1%percent11\%1 %, and with SKA to 0.1%percent0.10.1\%0.1 %.

This work implies that combining PTAs with current constraints from CMB, large-scale structure, Lyman-α𝛼\alphaitalic_α and superradiance (see Fig. 2), ultralight scalar dark matter can be constrained throughout the mass range 10301017eVsuperscript1030superscript1017eV10^{-30}\!-\!10^{-17}\,{\rm eV}10 start_POSTSUPERSCRIPT - 30 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 17 end_POSTSUPERSCRIPT roman_eV to less than 𝒪(10%)𝒪percent10\mathcal{O}(10\%)caligraphic_O ( 10 % ) of the dark matter.

Acknowledgements. We thank Jeff Hazboun, Sarah Libanore, David Marsh, Andrea Mitridate, Joseph Romano, Debanjan Sarkar, Marc Kamionkowski, Michael Lam, Sarah Vigeland, Stephen Taylor for discussions and feedback on the manuscript, and Jordan Flitter for the SPARC bounds. We thank especially Tristan Smith for the detailed explanations on low frequency signal, sensitivity and feedback on the draft. We also thank the anonymous referees for suggesting important corrections and improvements. CÜ thanks his family for their support during this work, and dedicates this work to Ece Ceyda Güdemek and Rümeysa Berin Şen. CÜ is supported by the Kreitman fellowship of BGU, and the Excellence fellowship of the Israeli Academy of Sciences and Humanities, and the Council for Higher Education. FU is supported by the European Regional Development Fund (ESIF/ERDF) and the Czech Ministry of Education, Youth and Sports (MEYS) through Project CoGraDS-CZ.02.1.01/0.0/0.0/15_003/0000437. EDK is supported by an Azrieli Foundation Faculty Fellowship.

References

  • (1) P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06, 051 (2006) [arXiv:hep-th/0605206 [hep-th]].
  • (2) A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, “String Axiverse,” Phys. Rev. D 81, 123530 (2010) [arXiv:0905.4720 [hep-th]].
  • (3) A. Khmelnitsky and V. Rubakov, “Pulsar timing signal from ultralight scalar dark matter,” JCAP 02, 019 (2014) [arXiv:1309.5888 [astro-ph.CO]].
  • (4) K. Blum and L. Teodori, “Gravitational lensing H0 tension from ultralight axion galactic cores,” Phys. Rev. D 104, no.12, 123011 (2021) [arXiv:2105.10873 [astro-ph.CO]].
  • (5) G. Ye, J. Zhang and Y. S. Piao, [arXiv:2107.13391 [astro-ph.CO]].
  • (6) E. G. M. Ferreira, “Ultra-light dark matter,” Astron. Astrophys. Rev. 29, no.1, 7 (2021) [arXiv:2005.03254 [astro-ph.CO]].
  • (7) R. Hlozek, D. Grin, D. J. E. Marsh and P. G. Ferreira, “A search for ultralight axions using precision cosmological data,” Phys. Rev. D 91, no.10, 103512 (2015) [arXiv:1410.2896 [astro-ph.CO]].
  • (8) V. Poulin, T. L. Smith, D. Grin, T. Karwal and M. Kamionkowski, “Cosmological implications of ultralight axionlike fields,” Phys. Rev. D 98, no.8, 083525 (2018) [arXiv:1806.10608 [astro-ph.CO]].
  • (9) A. Laguë, J. R. Bond, R. Hložek, K. K. Rogers, D. J. E. Marsh and D. Grin, “Constraining ultralight axions with galaxy surveys,” JCAP 01, no.01, 049 (2022) [arXiv:2104.07802 [astro-ph.CO]].
  • (10) B. Bozek, D. J. E. Marsh, J. Silk and R. F. G. Wyse, “Galaxy UV-luminosity function and reionization constraints on axion dark matter,” Mon. Not. Roy. Astron. Soc. 450, no.1, 209-222 (2015) [arXiv:1409.3544 [astro-ph.CO]].
  • (11) T. Kobayashi, R. Murgia, A. De Simone, V. Iršič and M. Viel, “Lyman-α𝛼\alphaitalic_α constraints on ultralight scalar dark matter: Implications for the early and late universe,” Phys. Rev. D 96, no.12, 123514 (2017) [arXiv:1708.00015 [astro-ph.CO]].
  • (12) V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton and G. D. Becker, “First constraints on fuzzy dark matter from Lyman-α𝛼\alphaitalic_α forest data and hydrodynamical simulations,” Phys. Rev. Lett. 119, no.3, 031302 (2017) [arXiv:1703.04683 [astro-ph.CO]].
  • (13) E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E. Marsh and J. Baur, “Constraining the mass of light bosonic dark matter using SDSS Lyman-α𝛼\alphaitalic_α forest,” Mon. Not. Roy. Astron. Soc. 471, no.4, 4606-4614 (2017) [arXiv:1703.09126 [astro-ph.CO]].
  • (14) K. K. Rogers and H. V. Peiris, “Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest,” Phys. Rev. Lett. 126, no.7, 071302 (2021) [arXiv:2007.12705 [astro-ph.CO]].
  • (15) K. K. Rogers and H. V. Peiris, “General framework for cosmological dark matter bounds using N𝑁Nitalic_N-body simulations,” Phys. Rev. D 103, no.4, 043526 (2021) [arXiv:2007.13751 [astro-ph.CO]].
  • (16) D. J. E. Marsh and J. C. Niemeyer, “Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II,” Phys. Rev. Lett. 123, no.5, 051103 (2019) [arXiv:1810.08543 [astro-ph.CO]].
  • (17) N. Bar, K. Blum and C. Sun, “Galactic rotation curves versus ultralight dark matter: A systematic comparison with SPARC data,” Phys. Rev. D 105, no.8, 8 (2022) [arXiv:2111.03070 [hep-ph]].
  • (18) D. Blas, D. López Nacir and S. Sibiryakov, “Secular effects of ultralight dark matter on binary pulsars,” Phys. Rev. D 101 (2020) no.6, 063016 [arXiv:1910.08544 [gr-qc]].
  • (19) J. M. Armaleo, D. López Nacir and F. R. Urban, “Binary pulsars as probes for spin-2 ultralight dark matter,” JCAP 01 (2020), 053 [arXiv:1909.13814 [astro-ph.HE]].
  • (20) D. López Nacir and F. R. Urban, “Vector Fuzzy Dark Matter, Fifth Forces, and Binary Pulsars,” JCAP 10 (2018), 044 [arXiv:1807.10491 [astro-ph.CO]].
  • (21) D. Blas, D. L. Nacir and S. Sibiryakov, “Ultralight Dark Matter Resonates with Binary Pulsars,” Phys. Rev. Lett. 118 (2017) no.26, 261102 [arXiv:1612.06789 [hep-ph]].
  • (22) C. Ünal, F. Pacucci and A. Loeb, “Properties of ultralight bosons from heavy quasar spins via superradiance,” JCAP 05, 007 (2021) [arXiv:2012.12790 [hep-ph]].
  • (23) R. N. Manchester, “The International Pulsar Timing Array,” Class. Quant. Grav. 30, 224010 (2013) [arXiv:1309.7392 [astro-ph.IM]].
  • (24) J. P. W. Verbiest, L. Lentati, G. Hobbs, R. van Haasteren, P. B. Demorest, G. H. Janssen, J. B. Wang, G. Desvignes, R. N. Caballero and M. J. Keith, et al. “The International Pulsar Timing Array: First Data Release,” Mon. Not. Roy. Astron. Soc. 458, no.2, 1267-1288 (2016) [arXiv:1602.03640 [astro-ph.IM]].
  • (25) Z. Arzoumanian et al. [NANOGrav], “The NANOGrav lim-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background,” Astrophys. J. 821, no.1, 13 (2016) [arXiv:1508.03024 [astro-ph.GA]].
  • (26) R. N. Manchester, G. Hobbs, M. Bailes, W. A. Coles, W. van Straten, M. J. Keith, R. M. Shannon, N. D. R. Bhat, A. Brown and S. G. Burke-Spolaor, et al. “The Parkes Pulsar Timing Array Project,” Publ. Astron. Soc. Austral. 30, 17 (2013) [arXiv:1210.6130 [astro-ph.IM]].
  • (27) L. Lentati, S. R. Taylor, C. M. F. Mingarelli, A. Sesana, S. A. Sanidas, A. Vecchio, R. N. Caballero, K. J. Lee, R. van Haasteren and S. Babak, et al. “European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background,” Mon. Not. Roy. Astron. Soc. 453, no.3, 2576-2598 (2015)
  • (28) A. Weltman, P. Bull, S. Camera, K. Kelley, H. Padmanabhan, J. Pritchard, A. Raccanelli, S. Riemer-Sørensen, L. Shao and S. Andrianomena, et al. “Fundamental physics with the Square Kilometre Array,” Publ. Astron. Soc. Austral. 37, e002 (2020)
  • (29) R. Hložek, D. J. E. Marsh, D. Grin, R. Allison, J. Dunkley and E. Calabrese, Phys. Rev. D 95, no.12, 123511 (2017) doi:10.1103/PhysRevD.95.123511 [arXiv:1607.08208 [astro-ph.CO]].
  • (30) M. Safarzadeh and D. N. Spergel, doi:10.3847/1538-4357/ab7db2 [arXiv:1906.11848 [astro-ph.CO]].
  • (31) M. Dentler, D. J. E. Marsh, R. Hložek, A. Laguë, K. K. Rogers and D. Grin, Mon. Not. Roy. Astron. Soc. 515, no.4, 5646-5664 (2022) doi:10.1093/mnras/stac1946 [arXiv:2111.01199 [astro-ph.CO]].
  • (32) J. Flitter and E. D. Kovetz, Phys. Rev. D 106, no.6, 063504 (2022) doi:10.1103/PhysRevD.106.063504 [arXiv:2207.05083 [astro-ph.CO]].
  • (33) S. Libanore, C. Unal, D. Sarkar and E. D. Kovetz, [arXiv:2208.01658 [astro-ph.CO]].
  • (34) S. Sun, X. Y. Yang and Y. L. Zhang, Phys. Rev. D 106, no.6, 066006 (2022) doi:10.1103/PhysRevD.106.066006 [arXiv:2112.15593 [astro-ph.CO]].
  • (35) W. Qin, K. K. Boddy and M. Kamionkowski, Phys. Rev. D 103, no.2, 024045 (2021) doi:10.1103/PhysRevD.103.024045 [arXiv:2007.11009 [gr-qc]].
  • (36) K. Nomura, A. Ito and J. Soda, “Pulsar timing residual induced by ultralight vector dark matter,” Eur. Phys. J. C 80, no.5, 419 (2020) [arXiv:1912.10210 [gr-qc]].
  • (37) J. M. Armaleo, D. López Nacir and F. R. Urban, “Pulsar timing array constraints on spin-2 ULDM,” JCAP 09, 031 (2020) [arXiv:2005.03731 [astro-ph.CO]].
  • (38) F. A. Jenet and J. D. Romano, “Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves,” Am. J. Phys. 83, 635 (2015) [arXiv:1412.1142 [gr-qc]].
  • (39) E. Thrane and J. D. Romano, “Sensitivity curves for searches for gravitational-wave backgrounds,” Phys. Rev. D 88, no.12, 124032 (2013) [arXiv:1310.5300 [astro-ph.IM]].
  • (40) C. J. Moore, R. H. Cole and C. P. L. Berry, “Gravitational-wave sensitivity curves,” Class. Quant. Grav. 32, no.1, 015014 (2015) [arXiv:1408.0740 [gr-qc]].
  • (41) J. D. Romano and N. J. Cornish, “Detection methods for stochastic gravitational-wave backgrounds: a unified treatment,” Living Rev. Rel. 20, no.1, 2 (2017) [arXiv:1608.06889 [gr-qc]].
  • (42) S. J. Vigeland and X. Siemens, Phys. Rev. D 94, no.12, 123003 (2016) doi:10.1103/PhysRevD.94.123003 [arXiv:1609.03656 [astro-ph.IM]].
  • (43) B. Goncharov, R. M. Shannon, D. J. Reardon, G. Hobbs, A. Zic, M. Bailes, M. Curylo, S. Dai, M. Kerr and M. E. Lower, et al. Astrophys. J. Lett. 917, no.2, L19 (2021) doi:10.3847/2041-8213/ac17f4 [arXiv:2107.12112 [astro-ph.HE]].
  • (44) J. M. Cordes and R. M. Shannon, “A Measurement Model for Precision Pulsar Timing,” [arXiv:1010.3785 [astro-ph.IM]].
  • (45) M. T. Lam, J. M. Cordes, S. Chatterjee, Z. Arzoumanian, K. Crowter, P. B. Demorest, T. Dolch, J. A. Ellis, R. D. Ferdman and E. Fonseca, et al. “The NANOGrav Nine-Year Data Set: Excess Noise in Millisecond Pulsar Arrival Times,” Astrophys. J. 834, no.1, 35 (2017) [arXiv:1610.01731 [astro-ph.HE]].
  • (46) B. Goncharov, D. J. Reardon, R. M. Shannon, X. J. Zhu, E. Thrane, M. Bailes, N. D. R. Bhat, S. Dai, G. Hobbs and M. Kerr, et al. Mon. Not. Roy. Astron. Soc. 502, no.1, 478-493 (2021) doi:10.1093/mnras/staa3411 [arXiv:2010.06109 [astro-ph.HE]].
  • (47) Z. Arzoumanian et al. [NANOGrav], Astrophys. J. Lett. 905, no.2, L34 (2020) doi:10.3847/2041-8213/abd401 [arXiv:2009.04496 [astro-ph.HE]].
  • (48) M. F. Alam et al. [NANOGrav], “The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars,” Astrophys. J. Suppl. 252, no.1, 5 (2021) [arXiv:2005.06495 [astro-ph.HE]].
  • (49) J. S. Hazboun, J. D. Romano and T. L. Smith, “Realistic sensitivity curves for pulsar timing arrays,” Phys. Rev. D 100, no.10, 104028 (2019) [arXiv:1907.04341 [gr-qc]].
  • (50) R. Smits, M. Kramer, B. Stappers, D. R. Lorimer, J. Cordes and A. Faulkner, “Pulsar searches and timing with the square kilometre array,” Astron. Astrophys. 493, 1161-1170 (2009) [arXiv:0811.0211 [astro-ph]].
  • (51) S. Chen, R. N. Caballero, Y. J. Guo, A. Chalumeau, K. Liu, G. Shaifullah, K. J. Lee, S. Babak, G. Desvignes and A. Parthasarathy, et al. Mon. Not. Roy. Astron. Soc. 508, no.4, 4970-4993 (2021) doi:10.1093/mnras/stab2833 [arXiv:2110.13184 [astro-ph.HE]].
  • (52) G. Janssen, G. Hobbs, M. McLaughlin, C. Bassa, A. T. Deller, M. Kramer, K. Lee, C. Mingarelli, P. Rosado, S. Sanidas, A. Sesana, L. Shao, I. Stairs, B. W. Stappers and J. Verbiest, “Gravitational wave astronomy with the SKA,” PoS AASKA14, 037 (2015) [arXiv:1501.00127 [astro-ph.IM]].
  • (53) C. Ünal, E. D. Kovetz and S. P. Patil, “Multimessenger probes of inflationary fluctuations and primordial black holes,” Phys. Rev. D 103, no.6, 063519 (2021) [arXiv:2008.11184 [astro-ph.CO]].
  • (54) J. M. Armaleo, D. López Nacir and F. R. Urban, “Searching for spin-2 ULDM with gravitational waves interferometers,” JCAP 04 (2021), 053
  • (55) A. Pierce, K. Riles and Y. Zhao, “Searching for Dark Photon Dark Matter with Gravitational Wave Detectors,” Phys. Rev. Lett. 121 (2018) no.6, 061102 [arXiv:1801.10161 [hep-ph]].
  • (56) R. Abbott et al. [LIGO Scientific Collaboration, Virgo Collaboration,, KAGRA and Virgo], “Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run,” Phys. Rev. D 105 (2022) no.6, 063030 [arXiv:2105.13085 [astro-ph.CO]].
  • (57) D. E. Kaplan, A. Mitridate and T. Trickle, Phys. Rev. D 106, no.3, 035032 (2022) doi:10.1103/PhysRevD.106.035032 [arXiv:2205.06817 [hep-ph]].