Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 16 Jun 2022 (v1), last revised 20 Jun 2024 (this version, v2)]
Title:The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure
View PDF HTML (experimental)Abstract:We analyze the BOSS power spectrum monopole and quadrupole, and the bispectrum monopole and quadrupole data, using the predictions from the Effective Field Theory of Large-Scale Structure (EFTofLSS). Specifically, we use the one loop prediction for the power spectrum and the bispectrum monopole, and the tree level for the bispectrum quadrupole. After validating our pipeline against numerical simulations as well as checking for several internal consistencies, we apply it to the observational data. We find that analyzing the bispectrum monopole to higher wavenumbers thanks to the one-loop prediction, as well as the addition of the tree-level quadrupole, significantly reduces the error bars with respect to our original analysis of the power spectrum at one loop and bispectrum monopole at tree level. After fixing the spectral tilt to Planck preferred value and using a Big Bang Nucleosynthesis prior, we measure $\sigma_8=0.794\pm 0.037$, $h = 0.692\pm 0.011$, and $\Omega_m = 0.311\pm 0.010$ to about $4.7\%$, $1.6\%$, and $3.2\%$, at $68\%$ CL, respectively. This represents an error bar reduction with respect to the power spectrum-only analysis of about $30\%$, $18\%$, and $13\%$ respectively. Remarkably, the results are compatible with the ones obtained with a power-spectrum-only analysis, showing the power of the EFTofLSS in simultaneously predicting several observables. We find no tension with Planck.
Submission history
From: Pierre Zhang [view email][v1] Thu, 16 Jun 2022 17:32:03 UTC (7,872 KB)
[v2] Thu, 20 Jun 2024 14:29:09 UTC (7,452 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.