Constraints on the minimally extended varying speed of light model using Pantheon+ dataset

Seokcheon Lee skylee2@gmail.com Department of Physics, Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Korea
Abstract

In the context of the minimally extended varying speed of light (meVSL) model, both the absolute magnitude and the luminosity distance of type Ia supernovae (SNe Ia) deviate from those predicted by general relativity (GR). Using data from the Pantheon+++ survey, we assess the plausibility of various dark energy models within the framework of meVSL. Both the constant equation of state (EoS) of the dark energy model (ω𝜔\omegaitalic_ωCDM) and the Chevallier-Polarski-Linder (CPL) parameterization model (ω=ω0+ωa(1a)𝜔subscript𝜔0subscript𝜔𝑎1𝑎\omega=\omega_{0}+\omega_{a}(1-a)italic_ω = italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( 1 - italic_a )) indicate potential variations in the cosmic speed of light at the 1-σ𝜎\sigmaitalic_σ confidence level. For Ωm0=0.30,0.31subscriptΩm00.300.31\Omega_{\text{m}0}=0.30,0.31roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.30 , 0.31, and 0.32 with (ω0,ωa)=(1,0)subscript𝜔0subscript𝜔𝑎10(\omega_{0}\,,\omega_{a})=(-1\,,0)( italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) = ( - 1 , 0 ), the 1-σ𝜎\sigmaitalic_σ range of c˙0/c0(1013yr1)subscript˙𝑐0subscript𝑐0superscript1013superscriptyr1\dot{c}_{0}/c_{0}\,(10^{-13}\,\text{yr}^{-1})over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) is (-8.76  , -0.89), (-11.8  , 3.93), and (-14.8  , -6.98), respectively. Meanwhile, the 1-σ𝜎\sigmaitalic_σ range of c˙0/c0(1012yr1)subscript˙𝑐0subscript𝑐0superscript1012superscriptyr1\dot{c}_{0}/c_{0}(10^{-12}\,\text{yr}^{-1})over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) for CPL dark energy models with 1.05ω00.951.05subscript𝜔00.95-1.05\leq\omega_{0}\leq-0.95- 1.05 ≤ italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ - 0.95 and 0.28Ωm00.320.28subscriptΩm00.320.28\leq\Omega_{\text{m}0}\leq 0.320.28 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.32, is (-6.31 , -2.98). The value of c𝑐citalic_c at z=3𝑧3z=3italic_z = 3 can exceed that of the present by 0.23similar-to0.230.2\sim 30.2 ∼ 3 % for ω𝜔\omegaitalic_ωCDM models and 513similar-to5135\sim 135 ∼ 13 % for CPL models. Additionally, for viable models except for the CPL model with Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28, we find 25.6G˙0/G0(1012yr1)0.3625.6subscript˙𝐺0subscript𝐺0superscript1012superscriptyr10.36-25.6\leq\dot{G}_{0}/G_{0}\,(10^{-12}\,\text{yr}^{-1})\leq-0.36- 25.6 ≤ over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ≤ - 0.36. For this particular model, we obtain an increasing rate of the gravitational constant within the range 1.65G˙0/G0(1012yr1)3.791.65subscript˙𝐺0subscript𝐺0superscript1012superscriptyr13.791.65\leq\dot{G}_{0}/G_{0}\,(10^{-12}\,\text{yr}^{-1})\leq 3.791.65 ≤ over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ≤ 3.79. We obtained some models that do not require dark matter energy density through statistical interpretation. However, this is merely an effect of the degeneracy between model parameters and energy density and does not imply that dark matter is unnecessary.

I Introduction

The principles of physics should remain unchanged regardless of the chosen units or measurement instruments. This is exemplified by dimensionless quantities such as the fine structure constant, α𝛼\alphaitalic_α, which retains its value across different unit systems, as demonstrated in the Standard Model of particle physics. Conversely, dimensional constants like Planck-constant-over-2-pi\hbarroman_ℏ, c𝑐citalic_c, G𝐺Gitalic_G, e𝑒eitalic_e, and k𝑘kitalic_k are human conventions whose numerical values vary depending on the units employed. Consequently, only dimensionless constants can be considered truly fundamental. Therefore, investigating potential variations over time in dimensionless fundamental constants is a valid scientific pursuit, while variations in dimensional constants like c𝑐citalic_c or G𝐺Gitalic_G depend on the chosen units and may result in discrepancies among observers. This perspective is supported by various studies Duff:2001ba ; Uzan:2002vq ; Ellis:2003pw ; Duff:2014mva , albeit within the framework of a static Universe or one existing at the present epoch Lee:2020zts ; Lee:2023bjz ; Lee:2024par .

In the Robertson-Walker (RW) metric, the expanding Universe is depicted as progressing from one hypersurface to another, with the scale factor increasing naturally, resulting in the cosmological redshift of various physical quantities, such as mass density, wavelength, and temperature. One can derive this metric from the cosmological principle and Weyl’s postulate. The redshift, defined as a function of the time-evolving cosmic scale factor a(t)𝑎𝑡a(t)italic_a ( italic_t ), yields positive values for z𝑧zitalic_z in our expanding Universe. Estimating the redshift of a galaxy involves analyzing the emission lines emitted by glowing gas within the galaxy. For example, the Hα𝛼\alphaitalic_α line, a red Balmer line of neutral hydrogen, has a rest wavelength of 6562656265626562Å. If the observed wavelength of this line presently measures 8100810081008100Å, it indicates that the galaxy is positioned at z=0.234𝑧0.234z=0.234italic_z = 0.234 (i.e., a=0.81𝑎0.81a=0.81italic_a = 0.81). Consequently, in an expanding Universe, the value of dimensional quantities, such as wavelength, varies depending on the observation time (i.e., cosmic time). Additionally, it has been observed that the temperature of the CMB decreases with the age of the Universe, scaling inversely with the scale factor as T=T0a1𝑇subscript𝑇0superscript𝑎1T=T_{0}a^{-1}italic_T = italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT Islam01 ; Narlikar02 ; Hobson06 ; Roos15 . However, the RW model lacks a mechanism to determine cosmological time dilation (TD). The standard model of cosmology (SMC) makes an additional assumption, asserting that the speed of light is constant (c𝑐citalic_c). This assumption arises from the dependence of SMC on general relativity (GR), which assumes that c𝑐citalic_c is invariant. As a result, the cosmological TD between two hypersurfaces at t=t1𝑡subscript𝑡1t=t_{1}italic_t = italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and t=t2𝑡subscript𝑡2t=t_{2}italic_t = italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT vary in proportion to the inverse of the scale factors a(t)𝑎𝑡a(t)italic_a ( italic_t ) at those specific times. However, if one allows a time-varying speed of light as proposed in this paper, this relationship may not hold anymore. Thus, establishing TD depends on experimental observations. Given the theoretical absence of cosmological TD, the relationship can be considered as a function of the scale factor, allowing the speed of light to be expressed as c(t1)=(a(t1)/a(t2))b/4c(t2)𝑐subscript𝑡1superscript𝑎subscript𝑡1𝑎subscript𝑡2𝑏4𝑐subscript𝑡2c(t_{1})=(a(t_{1})/a(t_{2}))^{b/4}c(t_{2})italic_c ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = ( italic_a ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) / italic_a ( italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT italic_b / 4 end_POSTSUPERSCRIPT italic_c ( italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) in the meVSL model, where b𝑏bitalic_b is a constant Lee:2020zts ; Lee:2023bjz ; Lee:2024par . Also, to preserve the Einstein Field Equations (EFE), the Einstein constant, denoted as κ=8πG/c4𝜅8𝜋𝐺superscript𝑐4\kappa=8\pi G/c^{4}italic_κ = 8 italic_π italic_G / italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, must remain constant even if both c𝑐citalic_c and G𝐺Gitalic_G undergo cosmological evolution. In the meVSL model, where c=c0ab/4𝑐subscript𝑐0superscript𝑎𝑏4c=c_{0}a^{b/4}italic_c = italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT italic_b / 4 end_POSTSUPERSCRIPT, this implies G=G0ab𝐺subscript𝐺0superscript𝑎𝑏G=G_{0}a^{b}italic_G = italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT where c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and G0subscript𝐺0G_{0}italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT represent the current values of the speed of light and the gravitational constant, respectively Lee:2020zts ; Lee:2023bjz ; Lee:2024par .

In addition to models like meVSL, there is a model such as Co-varying Physical Couplings (CPC) Cuzinatto:2022mfe ; Cuzinatto:2022vvy ; Cuzinatto:2022dta , where physical constants vary with cosmic time. The CPC retains the EFEs with G𝐺Gitalic_G, c𝑐citalic_c, and ΛΛ\Lambdaroman_Λ treated as functions of spacetime. The interaction between the Bianchi identity and the requirement of stress-energy tensor conservation complicates the potential variations of these constants, which are constrained to co-vary according to the General Constraint (GC). Unlike meVSL, this model includes the dynamics of physical constants through the adoption of GC.

Special relativity (SR)’s universal Lorentz covariance, grounded in Minkowski spacetime, adequately upholds its principles Morin07 . In contrast, within GR, an inertial frame (IF) refers to one that is freely falling. While Lorentz invariant (LI) spacetime intervals can be established between events, the definition of a global time in GR is impeded by the absence of a universal IF. However, a global time can be delineated for the Universe, satisfying the Cosmological Principle (CP), enabling a foliation of spacetime into non-intersecting spacelike 3D surfaces. This description pertains to the Universe modeled by the RW metric Islam01 ; Narlikar02 ; Hobson06 ; Roos15 . The LI varying speed of light (VSL) model is plausible if the speed of light, denoted as c𝑐citalic_c, remains locally constant at each given epoch but varies in cosmic time Lee:2020zts ; Lee:2023bjz ; Lee:2024par . In other words, in an expanding Universe, if the speed of light is expressed as a function of the scale factor, c[a]𝑐delimited-[]𝑎c[a]italic_c [ italic_a ], then although its value changes akin to wavelengths at different epochs, such as a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, it maintains a constant local value at each epoch, ensuring LI and thereby preserving the validity of quantum mechanics and electromagnetism in accordance with SR during every epoch. Thus, the speed of light could change over cosmic time or remain constant within an expanding Universe, contingent upon its relationship with cosmological TD. Without explicit laws governing TD, the speed of light in the RW metric could potentially vary with cosmological time, akin to other physical properties such as mass density, temperature, and fundamental constants like the Planck constant Lee:2020zts ; Lee:2022heb ; Lee:2023bjz ; Lee:2024par . However, to construct a coherent model around this concept, the varying speed of light (VSL) needs to be incorporated into the Einstein field equations (EFEs) and resolved for solutions. Previous studies, notably within the framework of the minimally extended VSL (meVSL) model, have addressed such scenarios Lee:2020zts ; Lee:2023bjz ; Lee:2024par . One can freely select a local value for the speed of light as it merely entails a scaling of length units. As long as this local value remains constant on a given time hypersurface, it satisfies the SR to be consistent with local physics laws. Newton’s gravitational constant, G𝐺Gitalic_G, could potentially vary. To avoid trivial unit rescaling, one must examine the concurrent variation of c𝑐citalic_c, G𝐺Gitalic_G, and possibly other physical constants Lee:2020zts ; Lee:2023bjz ; Lee:2024par .

Numerous endeavors have aimed to measure cosmological TD. One approach involves directly observing TD by analyzing the decay time of distant supernova (SN) light curves and spectra Leibundgut:1996qm ; SupernovaSearchTeam:1997gem ; Foley:2005qu ; Blondin:2007ua ; Blondin:2008mz . Another method entails measuring TD by examining the stretching of peak-to-peak timescales of gamma-ray bursters (GRBs) Norris:1993hda ; Wijers:1994qf ; Band:1994ee ; Meszaros:1995gj ; Lee:1996zu ; Chang:2001fy ; Crawford:2009be ; Zhang:2013yna ; Singh:2021jgr . Efforts have also been made to detect the TD effect in the light curves of quasars (QSOs) located at cosmological distances Hawkins:2001be ; Dai:2012wp . So far, no definitive detection of cosmic TD has been achieved, with conflicting results from different measurements.

The assessment of whether the speed of light alters due to the Universe’s expansion hinges solely on observation. Therefore, it is vital to observe how any changes in the speed of light affect cosmic scales. To achieve this, diverse observational methods have been utilized Lee:2020zts ; Lee:2024par .

First, there is the cosmic distance duality relation CDDR method among these methods. Etherington’s theorem, derived from the geodesic deviation equation, establishes reciprocity between the area distances of galaxies and observers, linked by the redshift factor (1+z)1𝑧(1+z)( 1 + italic_z ) under geometric invariance Etherington:1933pm . This theorem, applicable in spacetimes where photons follow null geodesics, forms the basis for the CDDR. By relating area distances to angular and luminosity distances, the CDDR offers a means to test the validity of the SMC  Ellis:1998ct ; Ellis:2007grg . Various tests of the CDDR using astrophysical and cosmological observations have been conducted to constrain VSL models More:2008uq ; Nair:2012dc ; Wu:2015prd ; Ma:2016bjt ; Martinelli:2020hud ; Holanda:2012ia ; Qi:2014zja ; Salzano:2014lra ; Lee:2021xwh ; Rodrigues:2021wyk ; Cuzinatto:2022mfe . Our analysis of the meVSL model suggests a potential deviation from the standard CDDR based on current data. However, with different priors for certain cosmological parameters, the current dataset aligns with the SMC, indicating no deviation from the expected CDDR Lee:2020zts ; Lee:2021xwh . Therefore, acquiring more precise data is essential to thoroughly investigate any deviations from the established CDDR and reaffirm the viability of the meVSL model.

Second, there is the Cosmic Chronometer (CC) method. The CC method involves observing two passively evolving galaxies, typically elliptical galaxies, assumed to have formed at the same cosmic epoch but observed at different redshifts  Jimenez:2001gg . This approach offers a model-independent means of measuring the Hubble parameter, H(z)𝐻𝑧H(z)italic_H ( italic_z ), as a function of redshift, derived from spectroscopic surveys with high precision (σz0.001subscript𝜎𝑧0.001\sigma_{z}\leq 0.001italic_σ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ≤ 0.001). The expansion rate of the meVSL model, or the Hubble parameter H(z)𝐻𝑧H(z)italic_H ( italic_z ), is determined from the differential age evolution of the Universe ΔtΔ𝑡\Delta troman_Δ italic_t within a given redshift interval (dz𝑑𝑧dzitalic_d italic_z) Lee:2020zts ; Lee:2023bjz ; Lee:2024par

H(z)a˙a𝐻𝑧˙𝑎𝑎\displaystyle H(z)\equiv\frac{\dot{a}}{a}italic_H ( italic_z ) ≡ divide start_ARG over˙ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG =11+zdzdt11+zΔzΔt=H(z)(SMC)(1+z)b/4absent11𝑧𝑑𝑧𝑑𝑡11𝑧Δ𝑧Δ𝑡𝐻superscript𝑧SMCsuperscript1𝑧𝑏4\displaystyle=-\frac{1}{1+z}\frac{dz}{dt}\approx-\frac{1}{1+z}\frac{\Delta z}{% \Delta t}=H(z)^{(\textrm{SMC})}(1+z)^{-b/4}= - divide start_ARG 1 end_ARG start_ARG 1 + italic_z end_ARG divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_t end_ARG ≈ - divide start_ARG 1 end_ARG start_ARG 1 + italic_z end_ARG divide start_ARG roman_Δ italic_z end_ARG start_ARG roman_Δ italic_t end_ARG = italic_H ( italic_z ) start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT
=H0E(z)(SMC)(1+z)b/4,absentsubscript𝐻0𝐸superscript𝑧SMCsuperscript1𝑧𝑏4\displaystyle=H_{0}E(z)^{(\textrm{SMC})}(1+z)^{-b/4}\,,= italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_E ( italic_z ) start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT , (1)

where E(SMC)superscript𝐸SMCE^{(\textrm{SMC})}italic_E start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT is the normalized Hubble parameter in the SMC model. Various methods exist for measuring ΔtΔ𝑡\Delta troman_Δ italic_t, including predicting its age based on the chemical composition of a stellar population or utilizing spectroscopic observables like the 4000400040004000 Åbreak, known to be linearly related to the age of the stellar population Moresco:2010wh . Unlike many cosmological measurements that rely on integrated distances, the CC method determines the expansion rate H(z)𝐻𝑧H(z)italic_H ( italic_z ) as a function of the redshift–time derivative dz/dt𝑑𝑧𝑑𝑡dz/dtitalic_d italic_z / italic_d italic_t, making it a potent tool for testing different cosmological models Wei:2016ygr ; Ratsimbazafy:2017vga ; Wei:2019uss ; Moresco:2020fbm ; Vagnozzi:2020dfn ; Dhawan:2021mel ; Borghi:2021zsr ; Borghi:2021rft ; Banerjee:2022ynv ; Jalilvand:2022lfb ; Asimakis:2022jel ; Kumar:2022ypo ; Li:2022cbk .. This method proves particularly valuable for investigating VSL models Rodrigues:2021wyk . Both minimum χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-analysis and maximum-likelihood analysis using the most recent CC data have been performed to constrain the parameter b of the meVSL model. However, the precision of the current CC data is insufficient to distinguish between the meVSL model and the SMC Lee:2023rqv .

Third, there are cosmological TDs observed from supernovae. The luminosity curve (LC) of a supernova (SN) offers valuable insights into its evolution, aiding in the classification and understanding of its properties. LC analysis helps determine crucial parameters such as peak luminosity, time to peak brightness, and rate of decline, particularly for SNe Ia, essential as standard candles in cosmology. Comparing LCs across distances enables investigation into cosmic expansion and TD, contributing to significant discoveries like accelerated expansion and dark energy. Wilson’s method involves comparing LCs of nearby and distant SNe, revealing TD effects due to light travel time through space Wilson:39 . This information is crucial for studying the Universe’s expansion rate and testing cosmological models, involving data collection, mathematical modeling, and comparison of observed TD with theoretical predictions. We derived a TD formula within the meVSL model, analyzing data from 13131313 high-redshift SNe Ia to determine the exponent b𝑏bitalic_b as b=0.198±0.415𝑏plus-or-minus0.1980.415b=0.198\pm 0.415italic_b = 0.198 ± 0.415 Blondin:2008mz ; Lee:2023ucu . While less precise than CC, our analysis indicates consistency with both SMC and the meVSL model. Thus, distinguishing between the two based on SNe TD data is challenging.

Fourth, there is the cosmography method. It employs a kinematic description of the Universe’s evolution based on the cosmological principle, emphasizing the dynamics of cosmic expansion. As a model-independent framework, it offers flexibility in managing cosmological parameters, allowing for generalized analysis unconstrained by preconceived models. By focusing on the later stages of cosmic evolution and utilizing Taylor expansions tailored to the observable domain where z1much-less-than𝑧1z\ll 1italic_z ≪ 1, cosmography imposes constraints on the present-day Universe. We adapt late-time cosmography to incorporate meVSL models SLee:24CG .

Lastly, in this paper, we aim to discuss the constraint on any evidence of the cosmic variation of the speed of light using Pantheon+++ data Scolnic:2017caz . The Pantheon compilation comprises a total of 1048104810481048 SNe Ia spanning a redshift range of 0.010.010.010.01 to 2.32.32.32.3. It includes 365365365365 spectroscopically confirmed SNe Ia from the Pan-STARRS1 (PS1) Medium Deep Survey, combined with a subset of 279279279279 PS1 SNe Ia (with redshifts ranging from 0.030.030.030.03 to 0.680.680.680.68) with reliable distance estimates obtained from various sources such as SDSS, SNLS, and HST samples. Cosmological models fitted to minimize the χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for flat ΛΛ\Lambdaroman_ΛCDM and ω𝜔\omegaitalic_ωCDM models, without accounting for systematic uncertainties on Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT, yield values of 0.284±0.012plus-or-minus0.2840.0120.284\pm 0.0120.284 ± 0.012 and 0.350±0.035plus-or-minus0.3500.0350.350\pm 0.0350.350 ± 0.035, respectively. The 1111-σ𝜎\sigmaitalic_σ constraint on ω𝜔\omegaitalic_ω for the ω𝜔\omegaitalic_ωCDM model is 1.251±0.144plus-or-minus1.2510.144-1.251\pm 0.144- 1.251 ± 0.144. The Pantheon dataset allows for a precise constraint of approximately 10% on Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT and 12% on ω𝜔\omegaitalic_ω for the flat ω𝜔\omegaitalic_ωCDM model, and about 4% on Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT for the flat ΛΛ\Lambdaroman_ΛCDM model.

In Section II, we give a brief overview of the meVSL model, delving into its theoretical foundations and implications for cosmological phenomena. Specifically, we explore the luminosity distance predictions derived from this model, shedding light on its unique characteristics and potential effects for observational data. In Section III, we elucidate the statistical methods employed in this paper. Additionally, a portion of the Mathematica file used for this purpose is included in the appendix. In Section IV, we provide a brief explanation of the temporal variations of the speed of light and Newton’s constant used in this paper, along with a concise interpretation for the ΛΛ\Lambdaroman_ΛCDM model for comparison. The investigation into models capable of implementing variations in the speed of light across various ω𝜔\omegaitalic_ωCDM models is conducted in Section V. Research on potential models within the CPL framework of the meVSL model is performed in Section VI. In Section VII, we offer various possible constraints on the temporal variations of the speed of light and Newton’s constant within the meVSL model, comparing them with existing observational constraints. Finally, in Section VIII, we distill our findings and insights into a comprehensive summary, drawing actionable conclusions and outlining avenues for future research and exploration in the realm of cosmology and fundamental physics.

II Summary for the meVSL

The conceptualization of the four-dimensional spacetime of a spatially homogeneous and isotropic, expanding universe entails envisioning it as a seamless continuum composed of homogeneous and isotropic spatial hypersurfaces evolving dynamically over cosmic time Islam01 ; Narlikar02 ; Hobson06 ; Roos15 . At the heart of this framework lies the RW metric, elegantly expressed by

ds2𝑑superscript𝑠2\displaystyle ds^{2}italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =c(t)2dt2+a2(t)γijdxidxj=c(t)2dt2+a2(t)(dr21kr2+r2dΩ2)absent𝑐superscript𝑡2𝑑superscript𝑡2superscript𝑎2𝑡subscript𝛾𝑖𝑗𝑑superscript𝑥𝑖𝑑superscript𝑥𝑗𝑐superscript𝑡2𝑑superscript𝑡2superscript𝑎2𝑡𝑑superscript𝑟21𝑘superscript𝑟2superscript𝑟2𝑑superscriptΩ2\displaystyle=-c(t)^{2}dt^{2}+a^{2}(t)\gamma_{ij}dx^{i}dx^{j}=-c(t)^{2}dt^{2}+% a^{2}(t)\left(\frac{dr^{2}}{1-kr^{2}}+r^{2}d\Omega^{2}\right)= - italic_c ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT = - italic_c ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) ( divide start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_k italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d roman_Ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )
=c(t)2dt2+a2(t)[dχ2+fk2(χ)dΩ2]c(t)2dt2+a(t)2dl3D2,absent𝑐superscript𝑡2𝑑superscript𝑡2superscript𝑎2𝑡delimited-[]𝑑superscript𝜒2superscriptsubscript𝑓𝑘2𝜒𝑑superscriptΩ2𝑐superscript𝑡2𝑑superscript𝑡2𝑎superscript𝑡2𝑑superscriptsubscript𝑙3D2\displaystyle=-c(t)^{2}dt^{2}+a^{2}(t)\left[d\chi^{2}+f_{k}^{2}(\chi)d\Omega^{% 2}\right]\equiv-c(t)^{2}dt^{2}+a(t)^{2}dl_{3\textrm{D}}^{2}\,,= - italic_c ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) [ italic_d italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_χ ) italic_d roman_Ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] ≡ - italic_c ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_l start_POSTSUBSCRIPT 3 D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (2)

where c(t)𝑐𝑡c(t)italic_c ( italic_t ) denotes the speed of light and γij(x)subscript𝛾𝑖𝑗𝑥\gamma_{ij}(\vec{x})italic_γ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG ) signifies the time-independent spatial metric defining the hypersurface, while a(t)𝑎𝑡a(t)italic_a ( italic_t ) governs the scale factor dictating the relationship between physical distance and comoving distance. We adopt that the speed of light is a function of cosmic time, deviating from the conventional RW metric. We already show that there is no contradiction in this assumption as long as we adopt the CP and Weyl’s postulate Lee:2023bjz ; Lee:2024par . The derivation of redshift involves utilizing the geodesic equation for a light wave, where ds2=0𝑑superscript𝑠20ds^{2}=0italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 as represented by Equation (2). The consistency of dl3D𝑑subscript𝑙3Ddl_{3\textrm{D}}italic_d italic_l start_POSTSUBSCRIPT 3 D end_POSTSUBSCRIPT over time is maintained by exclusively employing comoving coordinates. Building upon this foundation, we arrive at the expression for radial light signals:

dl3D𝑑subscript𝑙3D\displaystyle dl_{3\textrm{D}}italic_d italic_l start_POSTSUBSCRIPT 3 D end_POSTSUBSCRIPT =c(ti)dtia(ti):c1dt1a1=c2dt2a2{c1=c2=cifdt1a1=dt2a2SMCc1=(a1a2)b4c2ifdt1a11b4=dt2a21b4meVSL,formulae-sequenceabsent𝑐subscript𝑡𝑖𝑑subscript𝑡𝑖𝑎subscript𝑡𝑖:subscript𝑐1𝑑subscript𝑡1subscript𝑎1subscript𝑐2𝑑subscript𝑡2subscript𝑎2casessubscript𝑐1subscript𝑐2𝑐formulae-sequenceif𝑑subscript𝑡1subscript𝑎1𝑑subscript𝑡2subscript𝑎2SMCsubscript𝑐1superscriptsubscript𝑎1subscript𝑎2𝑏4subscript𝑐2formulae-sequenceif𝑑subscript𝑡1superscriptsubscript𝑎11𝑏4𝑑subscript𝑡2superscriptsubscript𝑎21𝑏4meVSL\displaystyle=\frac{c(t_{i})dt_{i}}{a(t_{i})}\quad:\quad\frac{c_{1}dt_{1}}{a_{% 1}}=\frac{c_{2}dt_{2}}{a_{2}}\Rightarrow\begin{cases}c_{1}=c_{2}=c&\textrm{if}% \quad\frac{dt_{1}}{a_{1}}=\frac{dt_{2}}{a_{2}}\quad\textrm{SMC}\\ c_{1}=\left(\frac{a_{1}}{a_{2}}\right)^{\frac{b}{4}}c_{2}&\textrm{if}\quad% \frac{dt_{1}}{a_{1}^{1-\frac{b}{4}}}=\frac{dt_{2}}{a_{2}^{1-\frac{b}{4}}}\quad% \textrm{meVSL}\end{cases}\,,= divide start_ARG italic_c ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_d italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_a ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG : divide start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_d italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_d italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ⇒ { start_ROW start_CELL italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_c end_CELL start_CELL if divide start_ARG italic_d italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_d italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG SMC end_CELL end_ROW start_ROW start_CELL italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( divide start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG italic_b end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL if divide start_ARG italic_d italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - divide start_ARG italic_b end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_d italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - divide start_ARG italic_b end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT end_ARG meVSL end_CELL end_ROW , (3)

where dti=1/ν(ti)𝑑subscript𝑡𝑖1𝜈subscript𝑡𝑖dt_{i}=1/\nu(t_{i})italic_d italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 / italic_ν ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) denotes the time interval between successive crests of light at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (i.e., the inverse of the frequency νisubscript𝜈𝑖\nu_{i}italic_ν start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT) and b𝑏bitalic_b characterizes the deviation of c𝑐citalic_c from the constant value. Thus, the RW metric naturally allows the VSL models if we remove the traditional assumption on the cosmological TD Lee:2020zts ; Lee:2023bjz ; Lee:2024par .

Additionally, the introduction of χ=DC𝜒subscript𝐷C\chi=D_{\text{C}}italic_χ = italic_D start_POSTSUBSCRIPT C end_POSTSUBSCRIPT as the comoving distance as

DC(z)0rdr1kr2=c0H00zdzE(SMC)(z)c0H0dC(z),\displaystyle D_{\text{C}}(z)\equiv\int_{0}^{r}\frac{dr^{\prime}}{\sqrt{1-kr^{% {}^{\prime}2}}}=\frac{c_{0}}{H_{0}}\int_{0}^{z}\frac{dz^{\prime}}{E^{(\textrm{% SMC})}(z^{\prime})}\equiv\frac{c_{0}}{H_{0}}d_{\text{C}}(z)\,,italic_D start_POSTSUBSCRIPT C end_POSTSUBSCRIPT ( italic_z ) ≡ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG italic_d italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG square-root start_ARG 1 - italic_k italic_r start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG = divide start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT divide start_ARG italic_d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ≡ divide start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_d start_POSTSUBSCRIPT C end_POSTSUBSCRIPT ( italic_z ) , (4)

where dLsubscript𝑑Ld_{\text{L}}italic_d start_POSTSUBSCRIPT L end_POSTSUBSCRIPT is the so-called the Hubble free luminosity distance and fk(χ)=sinh(kχ)/k=DMsubscript𝑓𝑘𝜒𝑘𝜒𝑘subscript𝐷Mf_{k}(\chi)=\sinh(\sqrt{-k}\chi)/\sqrt{-k}=D_{\text{M}}italic_f start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_χ ) = roman_sinh ( square-root start_ARG - italic_k end_ARG italic_χ ) / square-root start_ARG - italic_k end_ARG = italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT as the transverse comoving distance

DM(z)=DM(SMC)(z)={c0H01Ωk0sinh(Ωk0H0c~0DC)Ωk0>0DCΩk0=0c0H01|Ωk0|sin(|Ωk0|H0c~0DC)Ωk0<0,subscript𝐷M𝑧superscriptsubscript𝐷MSMC𝑧casessubscript𝑐0subscript𝐻01subscriptΩ𝑘0subscriptΩ𝑘0subscript𝐻0subscript~𝑐0subscript𝐷CsubscriptΩ𝑘00subscript𝐷CsubscriptΩ𝑘00subscript𝑐0subscript𝐻01subscriptΩ𝑘0subscriptΩ𝑘0subscript𝐻0subscript~𝑐0subscript𝐷CsubscriptΩ𝑘00\displaystyle D_{\text{M}}(z)=D_{\text{M}}^{(\textrm{SMC})}(z)=\begin{cases}% \frac{c_{0}}{H_{0}}\frac{1}{\sqrt{\Omega_{k0}}}\sinh\left(\sqrt{\Omega_{k0}}% \frac{H_{0}}{\tilde{c}_{0}}D_{\text{C}}\right)&\Omega_{k0}>0\\ D_{\text{C}}&\Omega_{k0}=0\\ \frac{c_{0}}{H_{0}}\frac{1}{\sqrt{|\Omega_{k0}|}}\sin\left(\sqrt{|\Omega_{k0}|% }\frac{H_{0}}{\tilde{c}_{0}}D_{\text{C}}\right)&\Omega_{k0}<0\end{cases}\,,italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT ( italic_z ) = italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( italic_z ) = { start_ROW start_CELL divide start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG 1 end_ARG start_ARG square-root start_ARG roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT end_ARG end_ARG roman_sinh ( square-root start_ARG roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_D start_POSTSUBSCRIPT C end_POSTSUBSCRIPT ) end_CELL start_CELL roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT > 0 end_CELL end_ROW start_ROW start_CELL italic_D start_POSTSUBSCRIPT C end_POSTSUBSCRIPT end_CELL start_CELL roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT = 0 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG 1 end_ARG start_ARG square-root start_ARG | roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT | end_ARG end_ARG roman_sin ( square-root start_ARG | roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT | end_ARG divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_D start_POSTSUBSCRIPT C end_POSTSUBSCRIPT ) end_CELL start_CELL roman_Ω start_POSTSUBSCRIPT italic_k 0 end_POSTSUBSCRIPT < 0 end_CELL end_ROW , (5)

with c0=2.9979×105subscript𝑐02.9979superscript105c_{0}=2.9979\times 10^{5}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 2.9979 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km/s and H0=100hsubscript𝐻0100hH_{0}=100\textrm{h}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 100 h km/Mpc/s representing the present values of the speed of light and the Hubble parameter, respectively SLee:24CG ; Tiesinga:2022 . In a recent local measurement by the SH0ES collaboration, utilizing Cepheid-calibrated SNeIa, the Hubble constant was reported to be approximately 73737373 km/s/Mpc Breuval:2024lsv , contrasting with the prediction of around 67676767 km/s/Mpc by the standard ΛΛ\Lambdaroman_ΛCDM model based on observations of the CMB Tristram:2023haj .

Within this conceptual framework, the timelike worldlines of constant space delineate the threading, while the spacelike hypersurfaces of constant time define the slicing within the four-dimensional spacetime. Each spacelike threading corresponds to a homogeneous universe at a given epoch, with the slicing being orthogonal to these hypersurfaces, offering a natural arrangement conducive to the definition of constant physical quantities such as density, temperature, and the speed of light on each spacelike hypersurface Islam01 ; Narlikar02 ; Hobson06 ; Roos15 .Thus, our choice of coordinates emerges organically, rendering alternative considerations unnecessary. Furthermore, the derivation of the Ricci tensors and Ricci scalar curvature from the provided metric in Eq. (2) further enriches the understanding of the underlying spacetime dynamics and its mathematical representation Lee:2020zts .Specifically, the expressions for R00subscript𝑅00R_{00}italic_R start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT and Riisubscript𝑅𝑖𝑖R_{ii}italic_R start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT are given by

R00=3c2(a¨aH2dlncdlna),Rii=giic2(2a˙2a2+a¨a+2kc2a2H2dlncdlna),\displaystyle R_{00}=-\frac{3}{c^{2}}\left(\frac{\ddot{a}}{a}-H^{2}\frac{d\ln c% }{d\ln a}\right)\quad,\quad R_{ii}=\frac{g_{ii}}{c^{2}}\left(2\frac{\dot{a}^{2% }}{a^{2}}+\frac{\ddot{a}}{a}+2k\frac{c^{2}}{a^{2}}-H^{2}\frac{d\ln c}{d\ln a}% \right)\,,italic_R start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = - divide start_ARG 3 end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG over¨ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG - italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d roman_ln italic_c end_ARG start_ARG italic_d roman_ln italic_a end_ARG ) , italic_R start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT = divide start_ARG italic_g start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 2 divide start_ARG over˙ start_ARG italic_a end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG over¨ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG + 2 italic_k divide start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d roman_ln italic_c end_ARG start_ARG italic_d roman_ln italic_a end_ARG ) , (6)
R=6c2(a¨a+a˙2a2+kc2a2H2dlncdlna).𝑅6superscript𝑐2¨𝑎𝑎superscript˙𝑎2superscript𝑎2𝑘superscript𝑐2superscript𝑎2superscript𝐻2𝑑𝑐𝑑𝑎\displaystyle R=\frac{6}{c^{2}}\left(\frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{% 2}}+k\frac{c^{2}}{a^{2}}-H^{2}\frac{d\ln c}{d\ln a}\right)\,.italic_R = divide start_ARG 6 end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG over¨ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG + divide start_ARG over˙ start_ARG italic_a end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_k divide start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d roman_ln italic_c end_ARG start_ARG italic_d roman_ln italic_a end_ARG ) . (7)

In cosmology, one treats matter as a perfect fluid, defined by its total mass density ρ𝜌\rhoitalic_ρ and isotropic pressure P𝑃Pitalic_P. This density is its rest frame mass density for a perfect fluid. Within the framework of GR, the stress-energy tensor describes this perfect fluid, given by

Tμν=(ρ+Pc2)UμUν+Pgμν,superscript𝑇𝜇𝜈𝜌𝑃superscript𝑐2superscript𝑈𝜇superscript𝑈𝜈𝑃superscript𝑔𝜇𝜈\displaystyle T^{\mu\nu}=\left(\rho+\frac{P}{c^{2}}\right)U^{\mu}U^{\nu}+Pg^{% \mu\nu}\,,italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = ( italic_ρ + divide start_ARG italic_P end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT + italic_P italic_g start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT , (8)

where Uμsuperscript𝑈𝜇U^{\mu}italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT represents its four-velocity. When the fluid is in motion, a set of fundamental (i.e. comoving) observers is considered comoving with it, characterized by a four-velocity denoted as Uμ=(c,0,0,0)superscript𝑈𝜇𝑐000U^{\mu}=(c,0,0,0)italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = ( italic_c , 0 , 0 , 0 )  Islam01 ; Hobson06 . Once one establishes the metric and the stress-energy tensor, the subsequent step involves solving the Einstein Field Equations (EFEs) to elucidate the dynamics of the scale factor in the metric. These equations govern the dynamics of expansion, including the speed and acceleration of the Universe’s expansion as observed between two fundamental observers. Thus, the energy-momentum tensor of the i𝑖iitalic_i-component perfect fluid with the equation of state ωisubscript𝜔𝑖\omega_{i}italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is given by Lee:2020zts

T(i)μν=diag(ρic2,Pi,Pi,Pi),withρic2=ρi0c02a3(1+ωi),\displaystyle T_{(i)\mu}^{\nu}=\text{diag}\left(-\rho_{i}c^{2},P_{i},P_{i},P_{% i}\right)\quad,\,\text{with}\quad\rho_{i}c^{2}=\rho_{i0}c_{0}^{2}a^{-3(1+% \omega_{i})}\,,italic_T start_POSTSUBSCRIPT ( italic_i ) italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = diag ( - italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , with italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_i 0 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT - 3 ( 1 + italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT , (9)

where c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the present value of the speed of light, ρi0subscript𝜌𝑖0\rho_{i0}italic_ρ start_POSTSUBSCRIPT italic_i 0 end_POSTSUBSCRIPT is the present value of mass density of the i-component, and we use a0=1subscript𝑎01a_{0}=1italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1. One can derive Friedmann equations including the general DE from Eqs. (6)-(9)

a˙2a2+kc2a2=i8πG3ρi=8πG3[ρr(a)+ρm(a)+ρDE(a)],superscript˙𝑎2superscript𝑎2𝑘superscript𝑐2superscript𝑎2subscript𝑖8𝜋𝐺3subscript𝜌𝑖8𝜋𝐺3delimited-[]subscript𝜌r𝑎subscript𝜌m𝑎subscript𝜌DE𝑎\displaystyle\frac{\dot{a}^{2}}{a^{2}}+k\frac{c^{2}}{a^{2}}=\sum_{i}\frac{8\pi G% }{3}\rho_{i}=\frac{8\pi G}{3}\left[\rho_{\textrm{r}}(a)+\rho_{\textrm{m}}(a)+% \rho_{\textrm{DE}}(a)\right]\,,divide start_ARG over˙ start_ARG italic_a end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_k divide start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT divide start_ARG 8 italic_π italic_G end_ARG start_ARG 3 end_ARG italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = divide start_ARG 8 italic_π italic_G end_ARG start_ARG 3 end_ARG [ italic_ρ start_POSTSUBSCRIPT r end_POSTSUBSCRIPT ( italic_a ) + italic_ρ start_POSTSUBSCRIPT m end_POSTSUBSCRIPT ( italic_a ) + italic_ρ start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT ( italic_a ) ] , (10)
a˙2a2+2a¨a+kc2a22H2dlncdlna=8πGiPic2=8πGiωiρisuperscript˙𝑎2superscript𝑎22¨𝑎𝑎𝑘superscript𝑐2superscript𝑎22superscript𝐻2𝑑𝑐𝑑𝑎8𝜋𝐺subscript𝑖subscript𝑃𝑖superscript𝑐28𝜋𝐺subscript𝑖subscript𝜔𝑖subscript𝜌𝑖\displaystyle\frac{\dot{a}^{2}}{a^{2}}+2\frac{\ddot{a}}{a}+k\frac{c^{2}}{a^{2}% }-2H^{2}\frac{d\ln c}{d\ln a}=-8\pi G\sum_{i}\frac{P_{i}}{c^{2}}=-8\pi G\sum_{% i}\omega_{i}\rho_{i}divide start_ARG over˙ start_ARG italic_a end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 divide start_ARG over¨ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG + italic_k divide start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d roman_ln italic_c end_ARG start_ARG italic_d roman_ln italic_a end_ARG = - 8 italic_π italic_G ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT divide start_ARG italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = - 8 italic_π italic_G ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
=8πG[13ρr(a)+ωDEρDE(a)],absent8𝜋𝐺delimited-[]13subscript𝜌r𝑎subscript𝜔DEsubscript𝜌DE𝑎\displaystyle=-8\pi G\left[\frac{1}{3}\rho_{\textrm{r}}(a)+\omega_{\textrm{DE}% }\rho_{\textrm{DE}}(a)\right]\,,= - 8 italic_π italic_G [ divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_ρ start_POSTSUBSCRIPT r end_POSTSUBSCRIPT ( italic_a ) + italic_ω start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT ( italic_a ) ] , (11)
a¨a=4πG3i(1+3ωi)ρi+H2dlncdlna¨𝑎𝑎4𝜋𝐺3subscript𝑖13subscript𝜔𝑖subscript𝜌𝑖superscript𝐻2𝑑𝑐𝑑𝑎\displaystyle\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}\sum_{i}\left(1+3\omega_{i}% \right)\rho_{i}+H^{2}\frac{d\ln c}{d\ln a}divide start_ARG over¨ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG = - divide start_ARG 4 italic_π italic_G end_ARG start_ARG 3 end_ARG ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 + 3 italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d roman_ln italic_c end_ARG start_ARG italic_d roman_ln italic_a end_ARG
=4πG3(2ρr(a)+ρm(a)+(1+ωDE)ρDE(a))+b4H2,absent4𝜋𝐺32subscript𝜌r𝑎subscript𝜌m𝑎1subscript𝜔DEsubscript𝜌DE𝑎𝑏4superscript𝐻2\displaystyle=-\frac{4\pi G}{3}\left(2\rho_{\textrm{r}}(a)+\rho_{\textrm{m}}(a% )+\left(1+\omega_{\textrm{DE}}\right)\rho_{\textrm{DE}}(a)\right)+\frac{b}{4}H% ^{2}\,,= - divide start_ARG 4 italic_π italic_G end_ARG start_ARG 3 end_ARG ( 2 italic_ρ start_POSTSUBSCRIPT r end_POSTSUBSCRIPT ( italic_a ) + italic_ρ start_POSTSUBSCRIPT m end_POSTSUBSCRIPT ( italic_a ) + ( 1 + italic_ω start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT ( italic_a ) ) + divide start_ARG italic_b end_ARG start_ARG 4 end_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (12)
ρr(a)=ρr0a4b2,ρm(a)=ρm0a3b2,ρDE(a)=ρDE0a3(1+ω0+ωa)b2e3ωa(1a),formulae-sequencesubscript𝜌r𝑎subscript𝜌r0superscript𝑎4𝑏2formulae-sequencesubscript𝜌m𝑎subscript𝜌m0superscript𝑎3𝑏2subscript𝜌DE𝑎subscript𝜌DE0superscript𝑎31subscript𝜔0subscript𝜔𝑎𝑏2superscript𝑒3subscript𝜔𝑎1𝑎\displaystyle\rho_{\textrm{r}}(a)=\rho_{\textrm{r}0}a^{-4-\frac{b}{2}}\,,\rho_% {\textrm{m}}(a)=\rho_{\textrm{m}0}a^{-3-\frac{b}{2}}\,,\rho_{\textrm{DE}}(a)=% \rho_{\textrm{DE}0}a^{-3(1+\omega_{0}+\omega_{a})-\frac{b}{2}}e^{-3\omega_{a}(% 1-a)}\,,italic_ρ start_POSTSUBSCRIPT r end_POSTSUBSCRIPT ( italic_a ) = italic_ρ start_POSTSUBSCRIPT r 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 4 - divide start_ARG italic_b end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT , italic_ρ start_POSTSUBSCRIPT m end_POSTSUBSCRIPT ( italic_a ) = italic_ρ start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 - divide start_ARG italic_b end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT , italic_ρ start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT ( italic_a ) = italic_ρ start_POSTSUBSCRIPT DE 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 ( 1 + italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) - divide start_ARG italic_b end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - 3 italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( 1 - italic_a ) end_POSTSUPERSCRIPT , (13)
ωDE=ω0+ωa(1a)={ω0,ωa0CPLωa=0ω,subscript𝜔DEsubscript𝜔0subscript𝜔𝑎1𝑎casessubscript𝜔0subscript𝜔𝑎0CPLsubscript𝜔𝑎0𝜔\displaystyle\omega_{\textrm{DE}}=\omega_{0}+\omega_{a}\left(1-a\right)=\begin% {cases}\omega_{0}\,,\omega_{a}\neq 0&\textrm{CPL}\\ \omega_{a}=0&\omega\end{cases}\,,italic_ω start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( 1 - italic_a ) = { start_ROW start_CELL italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≠ 0 end_CELL start_CELL CPL end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0 end_CELL start_CELL italic_ω end_CELL end_ROW , (14)

where ρr0subscript𝜌r0\rho_{\textrm{r}0}italic_ρ start_POSTSUBSCRIPT r 0 end_POSTSUBSCRIPT, ρm0subscript𝜌m0\rho_{\textrm{m}0}italic_ρ start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, and ρDE0subscript𝜌DE0\rho_{\textrm{DE}0}italic_ρ start_POSTSUBSCRIPT DE 0 end_POSTSUBSCRIPT represent the mass-density of radiation (photon and neutrino), matter (baryon and DM), and dark energy, respectively, at the present epoch Lee:2020zts ; Lee:2023bjz . The Chevallier-Polarski-Linder (CPL) parametrization, which assumes ωDEsubscript𝜔DE\omega_{\textrm{DE}}italic_ω start_POSTSUBSCRIPT DE end_POSTSUBSCRIPT to be a linear function of the scale factor a𝑎aitalic_a, is presented in Eq. (14) Chevallier:2000qy ; Linder:2002et . We also define the ω𝜔\omegaitalic_ω model when ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0.

II.1 Luminosity distance

The distance modulus, denoted by μ=mM𝜇𝑚𝑀\mu=m-Mitalic_μ = italic_m - italic_M, represents the discrepancy between the apparent magnitude m𝑚mitalic_m (ideally corrected for interstellar absorption effects) and the absolute magnitude M𝑀Mitalic_M of an astronomical entity. It is linked to the luminosity distance DLsubscript𝐷LD_{\textrm{L}}italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT in parsecs through the formula

μ=5log10[DL1Mpc]+25.𝜇5subscript10subscript𝐷L1Mpc25\displaystyle\mu=5\log_{10}\left[\frac{D_{\textrm{L}}}{1\textrm{Mpc}}\right]+2% 5\,.italic_μ = 5 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT [ divide start_ARG italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT end_ARG start_ARG 1 Mpc end_ARG ] + 25 . (15)

This definition proves convenient as the observed brightness of a light source correlates with its distance according to the inverse square law, and brightnesses are typically expressed in magnitudes. Absolute magnitude M𝑀Mitalic_M denotes the apparent magnitude of an object when viewed from a distance of 10101010 parsecs. The relationship between magnitudes and flux \mathcal{F}caligraphic_F is given by

m=2.5log10(DL),M=2.5log10(10).\displaystyle m=-2.5\log_{10}\mathcal{F}(D_{\text{L}})\quad,\quad M=-2.5\log_{% 10}\mathcal{F}(10)\,.italic_m = - 2.5 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT caligraphic_F ( italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ) , italic_M = - 2.5 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT caligraphic_F ( 10 ) . (16)

The expression for E(SMC)SMC{}^{(\textrm{SMC})}start_FLOATSUPERSCRIPT ( SMC ) end_FLOATSUPERSCRIPT in Eq.  (1) for a flat Universe (using the CPL parametrization is obtained from Eq. (10)

H(SMC)H0E(SMC)Ωm0a3+(1Ωm0)a3(1+ω0+ωa)e3ωa(1a),superscript𝐻SMCsubscript𝐻0superscript𝐸SMCsimilar-to-or-equalssubscriptΩm0superscript𝑎31subscriptΩm0superscript𝑎31subscript𝜔0subscript𝜔𝑎superscript𝑒3subscript𝜔𝑎1𝑎\displaystyle\frac{H^{(\textrm{SMC})}}{H_{0}}\equiv E^{(\textrm{SMC})}\simeq% \sqrt{\Omega_{\text{m}0}a^{-3}+\left(1-\Omega_{\text{m}0}\right)a^{-3(1+\omega% _{0}+\omega_{a})}e^{-3\omega_{a}(1-a)}}\,,divide start_ARG italic_H start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ≡ italic_E start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ≃ square-root start_ARG roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT + ( 1 - roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ) italic_a start_POSTSUPERSCRIPT - 3 ( 1 + italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - 3 italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( 1 - italic_a ) end_POSTSUPERSCRIPT end_ARG , (17)

where we ignore the radiation and the curvature contribution because we analyze the late-time Universe. To determine the luminosity distance in the meVSL model, we need to reevaluate its fundamental definition. Here, the observed luminosity L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT detected at the present epoch differs from the absolute luminosity Lssubscript𝐿𝑠L_{s}italic_L start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT of the source emitted at redshift z𝑧zitalic_z. Conservation of flux from the source to the observed point is

=Ls4πDL2(z)=L04πDM2(z0).subscript𝐿𝑠4𝜋superscriptsubscript𝐷L2𝑧subscript𝐿04𝜋superscriptsubscript𝐷M2subscript𝑧0\displaystyle\mathcal{F}=\frac{L_{s}}{4\pi D_{\textrm{L}}^{2}(z)}=\frac{L_{0}}% {4\pi D_{\textrm{M}}^{2}(z_{0})}\,.caligraphic_F = divide start_ARG italic_L start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_π italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) end_ARG = divide start_ARG italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_π italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG . (18)

The absolute luminosity, LsΔE1/Δt1subscript𝐿𝑠Δsubscript𝐸1Δsubscript𝑡1L_{s}\equiv\Delta E_{1}/\Delta t_{1}italic_L start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≡ roman_Δ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, represents the ratio of the emitted light energy ΔE1Δsubscript𝐸1\Delta E_{1}roman_Δ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to the emission time interval Δt1Δsubscript𝑡1\Delta t_{1}roman_Δ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Similarly, one can denote the observed luminosity as L0=ΔE0/Δt0subscript𝐿0Δsubscript𝐸0Δsubscript𝑡0L_{0}=\Delta E_{0}/\Delta t_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_Δ italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Consequently, one can rewrite the luminosity distance using Eq. (18) as Lee:2020zts ; Lee:2023bjz

DL2(z)=LsL0DM2(z0)=ΔE1ΔE0Δt0Δt1DM2(z0)=(1+z)2b4DM2(z0),superscriptsubscript𝐷L2𝑧subscript𝐿𝑠subscript𝐿0superscriptsubscript𝐷M2subscript𝑧0Δsubscript𝐸1Δsubscript𝐸0Δsubscript𝑡0Δsubscript𝑡1superscriptsubscript𝐷M2subscript𝑧0superscript1𝑧2𝑏4superscriptsubscript𝐷M2subscript𝑧0\displaystyle D_{\textrm{L}}^{2}(z)=\frac{L_{s}}{L_{0}}D_{\text{M}}^{2}(z_{0})% =\frac{\Delta E_{1}}{\Delta E_{0}}\frac{\Delta t_{0}}{\Delta t_{1}}D_{\text{M}% }^{2}(z_{0})=\left(1+z\right)^{2-\frac{b}{4}}D_{\textrm{M}}^{2}(z_{0})\,,italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) = divide start_ARG italic_L start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = divide start_ARG roman_Δ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 - divide start_ARG italic_b end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , (19)

where we employ

ΔE1ΔE0Δsubscript𝐸1Δsubscript𝐸0\displaystyle\frac{\Delta E_{1}}{\Delta E_{0}}divide start_ARG roman_Δ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =h1ν1h0ν0=ν1(SMC)ν0(SMC)=(1+z),Δt0Δt1=ν1ν0=ν1(SMC)(1+z)b/4ν0(SMC)=(1+z)1b4,\displaystyle=\frac{h_{1}\nu_{1}}{h_{0}\nu_{0}}=\frac{\nu_{1}^{(\text{SMC})}}{% \nu_{0}^{(\text{SMC})}}=(1+z)\quad,\quad\frac{\Delta t_{0}}{\Delta t_{1}}=% \frac{\nu_{1}}{\nu_{0}}=\frac{\nu_{1}^{(\text{SMC})}(1+z)^{-b/4}}{\nu_{0}^{(% \text{SMC})}}=(1+z)^{1-\frac{b}{4}}\,,= divide start_ARG italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT end_ARG = ( 1 + italic_z ) , divide start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT end_ARG = ( 1 + italic_z ) start_POSTSUPERSCRIPT 1 - divide start_ARG italic_b end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT , (20)

where we use the cosmic evolution relation for the Planck constant hi=h0aib/4subscript𝑖subscript0superscriptsubscript𝑎𝑖𝑏4h_{i}=h_{0}a_{i}^{-b/4}italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT. In the meVSL model, an expanding Universe must adhere to adiabatic expansion, leading to the cosmological evolution of the Planck constant Lee:2022heb . The first law of thermodynamics, which ensures energy conservation, requires that, the entropy of the Universe remains unchanged. Consequently, the Planck constant should evolve as h(ai)=h0aib/4subscript𝑎𝑖subscript0superscriptsubscript𝑎𝑖𝑏4h(a_{i})=h_{0}a_{i}^{-b/4}italic_h ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT in this model Lee:2020zts ; Lee:2023bjz ; Lee:2022heb . This relation also holds for the angular diameter distance DAsubscript𝐷AD_{\textrm{A}}italic_D start_POSTSUBSCRIPT A end_POSTSUBSCRIPT. Consequently, the luminosity distance in the meVSL model is given by Lee:2020zts

DL(z)=(1+z)1b8DM(z)=(1+z)2b8DA(z).subscript𝐷L𝑧superscript1𝑧1𝑏8subscript𝐷M𝑧superscript1𝑧2𝑏8subscript𝐷A𝑧\displaystyle D_{\textrm{L}}(z)=\left(1+z\right)^{1-\frac{b}{8}}D_{\textrm{M}}% (z)=\left(1+z\right)^{2-\frac{b}{8}}D_{\textrm{A}}(z)\,.italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( italic_z ) = ( 1 + italic_z ) start_POSTSUPERSCRIPT 1 - divide start_ARG italic_b end_ARG start_ARG 8 end_ARG end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT M end_POSTSUBSCRIPT ( italic_z ) = ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 - divide start_ARG italic_b end_ARG start_ARG 8 end_ARG end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT A end_POSTSUBSCRIPT ( italic_z ) . (21)

Under this premise, the modification of the absolute magnitude of SNe Ia is expressed as

MM0=2.5log[LL0]=54blog[a],𝑀subscript𝑀02.5𝐿subscript𝐿054𝑏𝑎\displaystyle M-M_{0}=-2.5\log\left[\frac{L}{L_{0}}\right]=\frac{5}{4}b\log% \left[a\right]\,,italic_M - italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 2.5 roman_log [ divide start_ARG italic_L end_ARG start_ARG italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ] = divide start_ARG 5 end_ARG start_ARG 4 end_ARG italic_b roman_log [ italic_a ] , (22)

where the subscript 00 denotes the local value of M𝑀Mitalic_M. The last equality of Eq. (22) can be obtained from the following Lee:2020zts . SNe Ia are nuclear explosions of white dwarfs (WDs) in binary systems, where the WD accretes matter from a companion until it approaches the Chandrasekhar limit. This limit represents the maximum mass a WD can have before electron degeneracy pressure fails to counteract gravitational collapse. For WDs, this limit is typically around 1.41.41.41.4 solar masses. If a WD exceeds this mass, it can collapse into a neutron star or black hole, while those below remain stable.

The Chandrasekhar mass limit, MChCh{}_{\textrm{Ch}}start_FLOATSUBSCRIPT Ch end_FLOATSUBSCRIPT, is determined by the equation of state for an ideal Fermi gas, with a constant ω032.018superscriptsubscript𝜔032.018\omega_{0}^{3}\approx 2.018italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ≈ 2.018 (a constant related to the solution for the so-called Land-Emden equation), the average molecular weight per electron μesubscript𝜇𝑒\mu_{e}italic_μ start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT, and the mass of the hydrogen atom mHsubscript𝑚Hm_{\textrm{H}}italic_m start_POSTSUBSCRIPT H end_POSTSUBSCRIPT  Lee:2020zts

MCh=ω033π2(cG)321(μemH)2MCh0ab2.subscriptMChsuperscriptsubscript𝜔033𝜋2superscriptPlanck-constant-over-2-pi𝑐𝐺321superscriptsubscript𝜇𝑒subscript𝑚H2subscriptMCh0superscript𝑎𝑏2\displaystyle\textrm{M}_{\textrm{Ch}}=\frac{\omega_{0}^{3}\sqrt{3\pi}}{2}\left% (\frac{\hbar c}{G}\right)^{\frac{3}{2}}\frac{1}{\left(\mu_{e}m_{\textrm{H}}% \right)^{2}}\equiv\textrm{M}_{\textrm{Ch}0}a^{-\frac{b}{2}}\,.M start_POSTSUBSCRIPT Ch end_POSTSUBSCRIPT = divide start_ARG italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT square-root start_ARG 3 italic_π end_ARG end_ARG start_ARG 2 end_ARG ( divide start_ARG roman_ℏ italic_c end_ARG start_ARG italic_G end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG ( italic_μ start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT H end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≡ M start_POSTSUBSCRIPT Ch 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - divide start_ARG italic_b end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT . (23)

The peak luminosity of SNe Ia is proportional to the mass of synthesized nickel, which is a fraction of the Chandrasekhar mass. Consequently, the absolute magnitude of SNe Ia, which measures luminosity, is related to the Chandrasekhar mass and the total amount of nickel synthesized LMChab2proportional-to𝐿subscriptMChproportional-tosuperscript𝑎𝑏2L\propto\textrm{M}_{\textrm{Ch}}\propto a^{-\frac{b}{2}}italic_L ∝ M start_POSTSUBSCRIPT Ch end_POSTSUBSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - divide start_ARG italic_b end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT. The absolute magnitude M𝑀Mitalic_M is given by M2.5log[L]54blog[a]proportional-to𝑀2.5𝐿proportional-to54𝑏𝑎M\propto-2.5\log[L]\propto\frac{5}{4}b\log[a]italic_M ∝ - 2.5 roman_log [ italic_L ] ∝ divide start_ARG 5 end_ARG start_ARG 4 end_ARG italic_b roman_log [ italic_a ]. Thus, the distance modulus of meVSL, μmM𝜇𝑚𝑀\mu\equiv m-Mitalic_μ ≡ italic_m - italic_M, is written as:

μ(z)𝜇𝑧\displaystyle\mu(z)italic_μ ( italic_z ) =mM=5log10[DLMpc]+25,DL=c0H0dL(z),dL(z)0zdzE(SMC)(z),\displaystyle=m-M=5\log_{10}\left[\frac{D_{\text{L}}}{\text{Mpc}}\right]+25% \quad,\quad D_{\text{L}}=\frac{c_{0}}{H_{0}}d_{\text{L}}(z)\,\,,\,\,d_{\text{L% }}(z)\equiv\int_{0}^{z}\frac{dz^{\prime}}{E^{(\text{SMC})}(z^{\prime})}\,,= italic_m - italic_M = 5 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT [ divide start_ARG italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT end_ARG start_ARG Mpc end_ARG ] + 25 , italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT = divide start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_d start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( italic_z ) , italic_d start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( italic_z ) ≡ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT divide start_ARG italic_d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_E start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG , (24)

where E(SMC)superscript𝐸SMCE^{(\text{SMC})}italic_E start_POSTSUPERSCRIPT ( SMC ) end_POSTSUPERSCRIPT is in Eq. (17). The theoretically predicted apparent magnitude mthsubscript𝑚thm_{\textrm{th}}italic_m start_POSTSUBSCRIPT th end_POSTSUBSCRIPT can be obtained from Eqs. (22) and (24)

mth(z)subscript𝑚th𝑧\displaystyle m_{\text{th}}(z)italic_m start_POSTSUBSCRIPT th end_POSTSUBSCRIPT ( italic_z ) =M0+5log[DL1Mpc]+25+54blog[a]absentsubscript𝑀05subscript𝐷L1Mpc2554𝑏𝑎\displaystyle=M_{0}+5\log\left[\frac{D_{\text{L}}}{1\text{Mpc}}\right]+25+% \frac{5}{4}b\log\left[a\right]= italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 5 roman_log [ divide start_ARG italic_D start_POSTSUBSCRIPT L end_POSTSUBSCRIPT end_ARG start_ARG 1 Mpc end_ARG ] + 25 + divide start_ARG 5 end_ARG start_ARG 4 end_ARG italic_b roman_log [ italic_a ]
=M0+42.38415log[h]158blog[(1+z)]+5log[dL]absentsubscript𝑀042.38415h158𝑏1𝑧5subscript𝑑L\displaystyle=M_{0}+42.3841-5\log\left[\textrm{h}\right]-\frac{15}{8}b\log% \left[(1+z)\right]+5\log\left[d_{\text{L}}\right]= italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 42.3841 - 5 roman_log [ h ] - divide start_ARG 15 end_ARG start_ARG 8 end_ARG italic_b roman_log [ ( 1 + italic_z ) ] + 5 roman_log [ italic_d start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ]
+5log[dL].absent5subscript𝑑L\displaystyle\equiv\mathcal{M}+5\log\left[d_{\text{L}}\right]\,.≡ caligraphic_M + 5 roman_log [ italic_d start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ] . (25)

III Statistical Analysis

We examine constraints on the evidence for cosmic variation in the speed of light using the Pantheon+++ dataset Scolnic:2017caz . The Pantheon compilation includes 1048104810481048 SNe Ia covering a redshift range 0.01z2.30.01𝑧2.30.01\leq z\leq 2.30.01 ≤ italic_z ≤ 2.3. This dataset incorporates 365365365365 spectroscopically confirmed SNe Ia from the Pan-STARRS1 (PS1) Medium Deep Survey, along with a subset of 279279279279 PS1 SNe Ia (with redshifts ranging from 0.030.030.030.03 to 0.680.680.680.68) with reliable distance estimates derived from various sources, including SDSS, SNLS, and HST samples. To determine cosmological parameters using H(z)𝐻𝑧H(z)italic_H ( italic_z ), higher-redshift SNe Ia are employed, and the degenerate parameters \mathcal{M}caligraphic_M are typically marginalized as nuisance parameters SDSS:2014iwm ; Pan-STARRS1:2017jku . For example, Eq. (25) is used to construct and minimize χ¯2(Ωm0)𝑑χ2(,Ωm0)superscript¯𝜒2subscriptΩm0differential-dsuperscript𝜒2subscriptΩm0\bar{\chi}^{2}(\Omega_{\text{m}0})\equiv\int d\mathcal{M}\chi^{2}(\mathcal{M}% \,,\Omega_{\text{m}0})over¯ start_ARG italic_χ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ) ≡ ∫ italic_d caligraphic_M italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_M , roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ) where the degenerate combination provided in the same equation Arjona:2018jhh ; Kazantzidis:2020tko . However, marginalizing the parameter \mathcal{M}caligraphic_M can result in the loss of valuable physical information regarding potential spatial variations of H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and/or temporal variations of the absolute magnitude \mathcal{M}caligraphic_M. For instance, an \mathcal{M}caligraphic_M value that evolves with redshift, resulting in low \mathcal{M}caligraphic_M values at low z𝑧zitalic_z, could indicate either higher local values of H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT due to a local matter underdensity or lower values of the absolute magnitude \mathcal{M}caligraphic_M in recent cosmological times, possibly caused by a time variation of Newton’s constant. Specifically, since we are studying the potential variation of the speed of light with cosmic time, we do not marginalize other parameters in this manuscript when we use the minimal χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT method Shanks:2018rka ; Shanks:2019inu ; Lukovic:2019ryg ; Bohringer:2019tyj . The chi-squared (χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) represents a weighted summation of squared deviations, given by

χ2=i,j(mi,obsmi,th)Cij1(mi,obsmj,th),superscript𝜒2subscript𝑖𝑗subscript𝑚𝑖obssubscript𝑚𝑖thsubscriptsuperscript𝐶1𝑖𝑗subscript𝑚𝑖obssubscript𝑚𝑗th\displaystyle\chi^{2}=\sum_{i,j}\left(m_{i,\text{obs}}-m_{i,\text{th}}\right)C% ^{-1}_{ij}\left(m_{i,\text{obs}}-m_{j,\text{th}}\right)\,,italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT italic_i , obs end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i , th end_POSTSUBSCRIPT ) italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT italic_i , obs end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_j , th end_POSTSUBSCRIPT ) , (26)

where mi,obssubscript𝑚𝑖obsm_{i,\textrm{obs}}italic_m start_POSTSUBSCRIPT italic_i , obs end_POSTSUBSCRIPT signifies the observed apparent magnitude, mi,thsubscript𝑚𝑖thm_{i,\textrm{th}}italic_m start_POSTSUBSCRIPT italic_i , th end_POSTSUBSCRIPT represents the theoretical apparent magnitude of SNe Ia at the redshift zisubscript𝑧𝑖z_{i}italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT as defined in Eq. (24), and Cij=Dij+Csyssubscript𝐶𝑖𝑗subscript𝐷𝑖𝑗subscript𝐶sysC_{ij}=D_{ij}+C_{\textrm{sys}}italic_C start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT sys end_POSTSUBSCRIPT denotes the covariance matrix. Here, Dij=σi2δijsubscript𝐷𝑖𝑗superscriptsubscript𝜎𝑖2subscript𝛿𝑖𝑗D_{ij}=\sigma_{i}^{2}\delta_{ij}italic_D start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT stands for the variance of each observation, and Csyssubscript𝐶sysC_{\textrm{sys}}italic_C start_POSTSUBSCRIPT sys end_POSTSUBSCRIPT is a non-diagonal matrix associated with systematic uncertainties. mthsubscript𝑚thm_{\text{th}}italic_m start_POSTSUBSCRIPT th end_POSTSUBSCRIPT is a function of M,h,Ωm0,ω0,𝑀hsubscriptΩm0subscript𝜔0M\,,\textrm{h}\,,\Omega_{\text{m}0}\,,\omega_{0}\,,italic_M , h , roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT. The reduced chi-square statistic defined as chi-square per degree of freedom is used extensively in the goodness of fit testing

χν2=χ2ν,subscriptsuperscript𝜒2𝜈superscript𝜒2𝜈\displaystyle\chi^{2}_{\nu}=\frac{\chi^{2}}{\nu}\,,italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = divide start_ARG italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ν end_ARG , (27)

where the degree of freedom ν=Np𝜈𝑁𝑝\nu=N-pitalic_ν = italic_N - italic_p, signifies the number of observations N𝑁Nitalic_N minus the number of fitted parameters p𝑝pitalic_p. As a heuristic, when the variance of the measurement error is known a priori, a χν21much-greater-thansubscriptsuperscript𝜒2𝜈1\chi^{2}_{\nu}\gg 1italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ≫ 1 suggests a substandard model fit. Conversely, a χν2>1subscriptsuperscript𝜒2𝜈1\chi^{2}_{\nu}>1italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT > 1 implies that the fit has not adequately captured the data (or that the error variance has been underestimated). Ideally, a χν2subscriptsuperscript𝜒2𝜈\chi^{2}_{\nu}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT around 1111 indicates that the correspondence between observations and estimates is congruent with the error variance. Since all models have nearly identical reduced chi-square values, this implies that all models are statistically equally viable.

IV Bounds for the variation of c𝑐citalic_c for different models

The previous constraint on the temporal variation of the speed of light c𝑐citalic_c was derived from the variation in the radius of a planet Racker:2007hj . However, this constraint stemmed from the analysis of the time-varying radius of Mercury McElhinny:1978na using a specific model known as the covariant variable speed of light theory proposed by Magueijo Magueijo:2000zt . Consequently, this constraint cannot be directly applied within the framework of the meVSL model.

To explore the variation of the speed of light over time, we turn to SNe Ia, which serve as reliable standard candles for probing the cosmic expansion rate in the late Universe. Our investigation focuses on utilizing data from the Pantheon SNe Ia catalog Scolnic:2017caz . Specifically, we delve into two primary models: the ω𝜔\omegaitalic_ωCDM model, which assumes a constant ω𝜔\omegaitalic_ω, and the CPL dark energy model. Through this analysis, we aim to shed light on the potential temporal evolution of the speed of light and its implications within these cosmological frameworks.

First, in the first row of Table 1, we considered the ΛΛ\Lambdaroman_ΛCDM models (ω0=1,ωa=0formulae-sequencesubscript𝜔01subscript𝜔𝑎0\omega_{0}=-1,\omega_{a}=0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 , italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0, and b=0𝑏0b=0italic_b = 0). When varying the local absolute magnitude M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from -19.35 to -19.55, we found that the best-fit value of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT remains unchanged at 0.285, while the best-fit values of h decrease from 0.7020.7020.7020.702 to 0.6400.6400.6400.640. For this model, the 1-σ𝜎\sigmaitalic_σ values for M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, and hhitalic_h are (19.6512,19.0732)19.651219.0732(-19.6512,-19.0732)( - 19.6512 , - 19.0732 ), (0.273,0.297)0.2730.297(0.273,0.297)( 0.273 , 0.297 ), and (0.605,0.791)0.6050.791(0.605,0.791)( 0.605 , 0.791 ), respectively. This suggests the interesting possibility that the h value derived from SNe Ia data can be similar to that of Planck data, potentially alleviating the Hubble tension. If we also allow the value of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to vary, its best-fit value becomes 19.3619.36-19.36- 19.36, and the best-fit value of h is 0.6980.6980.6980.698. Similar results were discussed in the reference Perivolaropoulos:2021bds . ΛΛ\Lambdaroman_ΛCDM refers to the case where we exclude VSL models. We present this model solely for comparison purposes. In our manuscript, we investigate the meVSL model for ω𝜔\omegaitalic_ωCDM and CPL models.

The main interest of this manuscript is whether the speed of light can vary in models with values of cosmological parameters similar to those of the SMC. Therefore, we will limit our discussions to such models. Among the CPL models, there are cases where the dark matter density is zero. There are also interesting papers interpreting these results Gueorguiev:2022wit ; Gupta:2024eqo . The so-called CCC (covarying coupling constants) + TL (tired light) cosmology obtains Ωm0=0subscriptΩm00\Omega_{\text{m}0}=0roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0 using the baryonic acoustic oscillation data Gupta:2024eqo . One can find the origin of dark matter and dark energy as a time-dependent conformal scale factor in the Scale Invariant Vacuum (SIV) paradigm Gueorguiev:2022wit . However, we will treat this outcome as merely a result of statistical analysis and will not consider any further interpretation or implication. Although this could be an interesting topic for another paper, as mentioned earlier, in this manuscript, we will focus primarily on models where the speed of light can vary with cosmological parameters consistent with the SMC. Also, as evident from equations (17) and (25), we acknowledge the degeneracy relationship between Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT and the ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT term in the exponential exponent. Thus, we accept that the value of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT can vary due to this term, and we refrain from further physical interpretations or alternative explanations.

V c𝑐citalic_c for ω𝜔\omegaitalic_ωCDM

We explore the ω𝜔\omegaitalic_ωCDM models, ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0, in Eq. (14). Utilizing a maximum likelihood analysis, we examine various models characterized by varying cosmological parameters. We show the results of these analyses in Table 1, which reveals intriguing insights into the relationships between these parameters.

Within this table, we uncover significant patterns and correlations among cosmological parameters. Notably, when ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is held constant, both M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and h exhibit degeneracy, as do Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT and b𝑏bitalic_b. Consequently, fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT results in nearly identical values for M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and h, with only b𝑏bitalic_b values varying. Conversely, when we fix the value of h, only the M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT values change, while Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT and b𝑏bitalic_b become irrelevant in this context.

Furthermore, we observe that among the ω𝜔\omegaitalic_ωCDM models derived from the Pantheon+++ data, those displaying noticeable time variations in the speed of light are specifically characterized by ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 and Ωm00.30subscriptΩm00.30\Omega_{\text{m}0}\geq 0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≥ 0.30. This observation highlights the complex interplay between cosmological parameters and their implications for understanding the temporal evolution of fundamental physical constants.

Table 1: Best fit values and their corresponding 1-σ𝜎\sigmaitalic_σ uncertainties for both ΛΛ\Lambdaroman_ΛCDM (ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0 and b=0𝑏0b=0italic_b = 0) and ω𝜔\omegaitalic_ωCDM models (with ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0) are presented. Models highlighted in green indicate potential meVSL models for ω𝜔\omegaitalic_ωCDM.
{adjustwidth*}
Models Submodels M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT hhitalic_h b𝑏bitalic_b ν𝜈\nuitalic_ν χν2superscriptsubscript𝜒𝜈2\chi_{\nu}^{2}italic_χ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
ΛΛ\Lambdaroman_ΛCDM fixing M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 19.350019.3500-19.3500- 19.3500 11-1- 1 0.285±0.012plus-or-minus0.2850.0120.285\pm 0.0120.285 ± 0.012 0.702±0.002plus-or-minus0.7020.0020.702\pm 0.0020.702 ± 0.002 00 1046104610461046 0.9880.9880.9880.988
19.450019.4500-19.4500- 19.4500 11-1- 1 0.285±0.012plus-or-minus0.2850.0120.285\pm 0.0120.285 ± 0.012 0.670±0.002plus-or-minus0.6700.0020.670\pm 0.0020.670 ± 0.002 00 1046104610461046 0.9890.9890.9890.989
19.550019.5500-19.5500- 19.5500 11-1- 1 0.285±0.012plus-or-minus0.2850.0120.285\pm 0.0120.285 ± 0.012 0.640±0.002plus-or-minus0.6400.0020.640\pm 0.0020.640 ± 0.002 00 1046104610461046 0.9890.9890.9890.989
19.3622±0.2890plus-or-minus19.36220.2890-19.3622\pm 0.2890- 19.3622 ± 0.2890 11-1- 1 0.285±0.012plus-or-minus0.2850.0120.285\pm 0.0120.285 ± 0.012 0.698±0.093plus-or-minus0.6980.0930.698\pm 0.0930.698 ± 0.093 00 1045104510451045 0.9890.9890.9890.989
ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT 19.3556±0.2899plus-or-minus19.35560.2899-19.3556\pm 0.2899- 19.3556 ± 0.2899 11-1- 1 0.280.280.280.28 0.700±0.093plus-or-minus0.7000.0930.700\pm 0.0930.700 ± 0.093 0.009±0.022plus-or-minus0.0090.0220.009\pm 0.0220.009 ± 0.022 1045104510451045 0.9890.9890.9890.989
19.3558±0.2899plus-or-minus19.35580.2899-19.3558\pm 0.2899- 19.3558 ± 0.2899 11-1- 1 0.290.290.290.29 0.700±0.093plus-or-minus0.7000.0930.700\pm 0.0930.700 ± 0.093 0.009±0.022plus-or-minus0.0090.022-0.009\pm 0.022- 0.009 ± 0.022 1045104510451045 0.9890.9890.9890.989
19.3561±0.2899plus-or-minus19.35610.2899-19.3561\pm 0.2899- 19.3561 ± 0.2899 11-1- 1 0.300.300.300.30 0.700±0.093plus-or-minus0.7000.0930.700\pm 0.0930.700 ± 0.093 0.027±0.022plus-or-minus0.0270.022-0.027\pm 0.022- 0.027 ± 0.022 1045104510451045 0.9890.9890.9890.989
19.3563±0.2899plus-or-minus19.35630.2899-19.3563\pm 0.2899- 19.3563 ± 0.2899 11-1- 1 0.310.310.310.31 0.700±0.093plus-or-minus0.7000.0930.700\pm 0.0930.700 ± 0.093 0.044±0.022plus-or-minus0.0440.022-0.044\pm 0.022- 0.044 ± 0.022 1045104510451045 0.9890.9890.9890.989
V.1 19.3566±0.2898plus-or-minus19.35660.2898-19.3566\pm 0.2898- 19.3566 ± 0.2898 11-1- 1 0.320.320.320.32 0.700±0.093plus-or-minus0.7000.0930.700\pm 0.0930.700 ± 0.093 0.061±0.022plus-or-minus0.0610.022-0.061\pm 0.022- 0.061 ± 0.022 1045104510451045 0.9890.9890.9890.989
fixing h 19.4395±0.0072plus-or-minus19.43950.0072-19.4395\pm 0.0072- 19.4395 ± 0.0072 11-1- 1 0.299±0.111plus-or-minus0.2990.1110.299\pm 0.1110.299 ± 0.111 0.67360.67360.67360.6736 0.025±0.193plus-or-minus0.0250.193-0.025\pm 0.193- 0.025 ± 0.193 1045104510451045 0.9890.9890.9890.989
V.3 19.2353±0.0072plus-or-minus19.23530.0072-19.2353\pm 0.0072- 19.2353 ± 0.0072 11-1- 1 0.299±0.111plus-or-minus0.2990.1110.299\pm 0.1110.299 ± 0.111 0.740.740.740.74 0.025±0.193plus-or-minus0.0250.193-0.025\pm 0.193- 0.025 ± 0.193 1045104510451045 0.9890.9890.9890.989
ω𝜔\omegaitalic_ωCDM fixing h 19.4525±0.0071plus-or-minus19.45250.0071-19.4525\pm 0.0071- 19.4525 ± 0.0071 1.23±0.05plus-or-minus1.230.05-1.23\pm 0.05- 1.23 ± 0.05 0.380±0.085plus-or-minus0.3800.0850.380\pm 0.0850.380 ± 0.085 0.67360.67360.67360.6736 0.057±0.159plus-or-minus0.0570.159-0.057\pm 0.159- 0.057 ± 0.159 1044104410441044 0.9880.9880.9880.988
V.4 19.2481±0.0071plus-or-minus19.24810.0071-19.2481\pm 0.0071- 19.2481 ± 0.0071 1.22±0.05plus-or-minus1.220.05-1.22\pm 0.05- 1.22 ± 0.05 0.378±0.087plus-or-minus0.3780.0870.378\pm 0.0870.378 ± 0.087 0.740.740.740.74 0.055±0.163plus-or-minus0.0550.163-0.055\pm 0.163- 0.055 ± 0.163 1044104410441044 0.9880.9880.9880.988
fixing ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 19.3655±0.2893plus-or-minus19.36550.2893-19.3655\pm 0.2893- 19.3655 ± 0.2893 0.90.9-0.9- 0.9 0.311±0.106plus-or-minus0.3110.1060.311\pm 0.1060.311 ± 0.106 0.695±0.093plus-or-minus0.6950.0930.695\pm 0.0930.695 ± 0.093 0.106±0.163plus-or-minus0.1060.163-0.106\pm 0.163- 0.106 ± 0.163 1044104410441044 0.9930.9930.9930.993
19.3659±0.2847plus-or-minus19.36590.2847-19.3659\pm 0.2847- 19.3659 ± 0.2847 0.950.95-0.95- 0.95 0.301±0.092plus-or-minus0.3010.0920.301\pm 0.0920.301 ± 0.092 0.696±0.091plus-or-minus0.6960.0910.696\pm 0.0910.696 ± 0.091 0.058±0.152plus-or-minus0.0580.152-0.058\pm 0.152- 0.058 ± 0.152 1044104410441044 0.9920.9920.9920.992
19.3728±0.2877plus-or-minus19.37280.2877-19.3728\pm 0.2877- 19.3728 ± 0.2877 1.01.0-1.0- 1.0 0.299±0.111plus-or-minus0.2990.1110.299\pm 0.1110.299 ± 0.111 0.695±0.092plus-or-minus0.6950.0920.695\pm 0.0920.695 ± 0.092 0.025±0.193plus-or-minus0.0250.193-0.025\pm 0.193- 0.025 ± 0.193 1044104410441044 0.9900.9900.9900.990
19.3676±0.2908plus-or-minus19.36760.2908-19.3676\pm 0.2908- 19.3676 ± 0.2908 1.051.05-1.05- 1.05 0.290±0.110plus-or-minus0.2900.1100.290\pm 0.1100.290 ± 0.110 0.697±0.093plus-or-minus0.6970.0930.697\pm 0.0930.697 ± 0.093 0.023±0.305plus-or-minus0.0230.3050.023\pm 0.3050.023 ± 0.305 1044104410441044 0.9890.9890.9890.989
V.5 19.3642±0.2895plus-or-minus19.36420.2895-19.3642\pm 0.2895- 19.3642 ± 0.2895 1.11.1-1.1- 1.1 0.288±0.134plus-or-minus0.2880.1340.288\pm 0.1340.288 ± 0.134 0.699±0.093plus-or-minus0.6990.0930.699\pm 0.0930.699 ± 0.093 0.054±0.262plus-or-minus0.0540.2620.054\pm 0.2620.054 ± 0.262 1044104410441044 0.9880.9880.9880.988
No fixing 19.5513±0.1284plus-or-minus19.55130.1284-19.5513\pm 0.1284- 19.5513 ± 0.1284 1.22±0.04plus-or-minus1.220.04-1.22\pm 0.04- 1.22 ± 0.04 0.335±0.088plus-or-minus0.3350.0880.335\pm 0.0880.335 ± 0.088 0.644±0.038plus-or-minus0.6440.0380.644\pm 0.0380.644 ± 0.038 0.022±0.176plus-or-minus0.0220.1760.022\pm 0.1760.022 ± 0.176 1043104310431043 0.9890.9890.9890.989

V.1 ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 with fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

We keep Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT constant and perform a χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT test on these models. Notably, the value of h remains unchanged even as we vary Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT within the range of 0.280.280.280.28 to 0.320.320.320.32. As Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT increases, both M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and b𝑏bitalic_b decrease. Especially, the best-fit value of b𝑏bitalic_b is positive only for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28, while for other values within this range, the best-fit values of b𝑏bitalic_b are negative.

Within the 1-σ𝜎\sigmaitalic_σ error range, the values of b𝑏bitalic_b show both positive and negative trends for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 and 0.290.290.290.29. However, for 0.30Ωm00.320.30subscriptΩm00.320.30\leq\Omega_{\text{m}0}\leq 0.320.30 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.32, the 1-σ𝜎\sigmaitalic_σ region consistently yields negative values for b𝑏bitalic_b, indicating a decrease in the speed of light over cosmic time. These trends are illustrated in Fig. 1.

In panel a of Fig. 1, we depict the cosmic evolution of the best-fit value of c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT along with its 1-sigma𝑠𝑖𝑔𝑚𝑎sigmaitalic_s italic_i italic_g italic_m italic_a errors for the model with ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 and Ωm0=0.29subscriptΩm00.29\Omega_{\text{m}0}=0.29roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.29. Here, the best-fit value of b𝑏bitalic_b is 0.0090.009-0.009- 0.009, suggesting an increase in the speed of light with increasing z𝑧zitalic_z. However, the uncertainty in b𝑏bitalic_b allows for both negative and positive values within the 1-σ𝜎\sigmaitalic_σ error range, leading to ambiguity regarding the variation in the speed of light for this model.

For Ωm00.30subscriptΩm00.30\Omega_{\text{m}0}\geq 0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≥ 0.30, the best-fit value of b𝑏bitalic_b is consistently negative within the 1-σ𝜎\sigmaitalic_σ error range, indicating a monotonically decreasing speed of light over cosmic time. In panel b of Fig. 1, we show the cosmological evolution of c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for the model with ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 and Ωm0=0.30subscriptΩm00.30\Omega_{\text{m}0}=0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.30. In this case, the best-fit value of b𝑏bitalic_b is 0.0270.027-0.027- 0.027, further supporting the decrease in the speed of light over time.

Additionally, the ratio of the time variation of the speed of light to its present value, expressed as c˙0/c0=b4H0subscript˙𝑐0subscript𝑐0𝑏4subscript𝐻0\dot{c}_{0}/c_{0}=\frac{b}{4}H_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_b end_ARG start_ARG 4 end_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, is constrained within the 1-σ𝜎\sigmaitalic_σ ranges of (8.76,0.89)8.760.89(-8.76,-0.89)( - 8.76 , - 0.89 ), (11.80,3.93)11.803.93(-11.80,-3.93)( - 11.80 , - 3.93 ), and (14.84,6.98)14.846.98(-14.84,-6.98)( - 14.84 , - 6.98 ) for Ωm0=0.30subscriptΩm00.30\Omega_{\text{m}0}=0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.30, 0.31, and 0.32, respectively. These constraints represent significant improvements over those reported in Racker:2007hj .

V.2 ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 without fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

Within the 1-σ𝜎\sigmaitalic_σ error range, the cosmological parameters for the model with ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 are 19.6605M019.085119.6605subscript𝑀019.0851-19.6605\leq M_{0}\leq-19.0851- 19.6605 ≤ italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ - 19.0851, 0.188Ωm00.4100.188subscriptΩm00.4100.188\leq\Omega_{\text{m}0}\leq 0.4100.188 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.410, 0.603h0.7870.6030.7870.603\leq h\leq 0.7870.603 ≤ italic_h ≤ 0.787, and 0.218b0.1680.218𝑏0.168-0.218\leq b\leq 0.168- 0.218 ≤ italic_b ≤ 0.168. Compared to the ΛΛ\Lambdaroman_ΛCDM model, the constraint on Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT in the meVSL model is significantly weaker. It is because, as can be understood from equation (25), both h and b𝑏bitalic_b contribute to mthsubscript𝑚thm_{\text{th}}italic_m start_POSTSUBSCRIPT th end_POSTSUBSCRIPT, allowing the effect of changes in h to yield similar results from changes in b𝑏bitalic_b.

In the meVSL framework, the cosmological evolution of the speed of light is described by c=c0(1+z)b/4𝑐subscript𝑐0superscript1𝑧𝑏4c=c_{0}(1+z)^{-b/4}italic_c = italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b / 4 end_POSTSUPERSCRIPT. The best-fit value of b𝑏bitalic_b is 0.0250.025-0.025- 0.025, suggesting that the speed of light was higher in the past than it is today. However, the 1-σ𝜎\sigmaitalic_σ range of b𝑏bitalic_b includes both negative and positive values, making it inconclusive to definitively determine the variation of the speed of light in this model.

Refer to caption Refer to caption
Figure 1: The plots depict the ratios of c𝑐citalic_c to its present value, c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, as a function of redshift for different Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT values, with ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1. In panel (a), we observe c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for Ωm0=0.29subscriptΩm00.29\Omega_{\text{m}0}=0.29roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.29, where the dashed line represents the best-fit value, while the solid lines denote the 1111-σ𝜎\sigmaitalic_σ error margins. Panel (b) displays c(z)/c0𝑐𝑧subscript𝑐0c(z)/c_{0}italic_c ( italic_z ) / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for Ωm0=0.30subscriptΩm00.30\Omega_{\text{m}0}=0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.30, with the dashed line indicating the best-fit value and the solid lines indicating the 1-σ𝜎\sigmaitalic_σ errors.

V.3 ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 with fixing h

We keep the value of h fixed and perform a maximum likelihood analysis. In these scenarios, both Ωm0(=0.299±0.111)annotatedsubscriptΩm0absentplus-or-minus0.2990.111\Omega_{\text{m}0}(=0.299\pm 0.111)roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ( = 0.299 ± 0.111 ) and b(=0.025±0.193)annotated𝑏absentplus-or-minus0.0250.193b(=-0.025\pm 0.193)italic_b ( = - 0.025 ± 0.193 ) remain stable despite variations in h ranging from 0.63760.63760.63760.6376 to 0.740.740.740.74. As h increases, M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT also experiences a corresponding increase. The best-fit value of b𝑏bitalic_b remains consistent at 0.0250.025-0.025- 0.025 across these models, indicating a consistent decreasing trend in the speed of light over cosmic time. We also understand from Equation (25) that the variation in M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is insensitive to changes in h. However, within the 1-σ𝜎\sigmaitalic_σ error margin, the values of b𝑏bitalic_b exhibit both positive and negative trends. Consequently, it is plausible to conclude that there is no significant variation in the speed of light within these models.

V.4 Fixing h

We perform a maximum likelihood analysis while varying other parameters under a fixed value of h. Under this condition, while we systematically vary h from 0.67360.67360.67360.6736 to 0.740.740.740.74, the best-fit values of parameters M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, and b𝑏bitalic_b all show an increasing trend. However, concurrently, the best-fit value of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT exhibits a decrease as h increases. Furthermore, as h increases, M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT also shows an upward trend. Notably, the best-fit values of b𝑏bitalic_b consistently remain negative across these models, showing a consistent decrease in the speed of light over cosmic time. Nonetheless, within the 1111-σ𝜎\sigmaitalic_σ error range, the values of b𝑏bitalic_b demonstrate a variability, with some values being positive and others negative, suggesting no clear discernible pattern in the variation of the speed of light for these models.

V.5 Fixing ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT

We conduct a maximum likelihood analysis for ω𝜔\omegaitalic_ωCDM models, with no fixed cosmological parameters except ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. The range of ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is varied from 0.90.9-0.9- 0.9 to 1.11.1-1.1- 1.1. As ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT decreases, Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT decreases while b𝑏bitalic_b increases. However, consistent trends were not observed in the changes of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and h across these models. For models with ω01.0subscript𝜔01.0\omega_{0}\geq-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≥ - 1.0, the best-fit values of b𝑏bitalic_b were negative, while positive best-fit values of b𝑏bitalic_b were obtained for models with ω01.0subscript𝜔01.0\omega_{0}\leq-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ - 1.0. Nevertheless, within the 1111-σ𝜎\sigmaitalic_σ error range, the values of b𝑏bitalic_b for all models included both positive and negative values, suggesting no clear evidence of variations in the speed of light in these models.

V.6 WIthout fixing

Finally, we conduct a maximum likelihood analysis without fixing any parameters. In this case, the best-fit value of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT decreases with increasing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, reaching 0.3350.3350.3350.335, while the values of ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and hhitalic_h decrease to 1.221.22-1.22- 1.22 and 0.6440.6440.6440.644, respectively. These are shown in the last row of Table 1.

VI c𝑐citalic_c for CPL

In this section, we perform a maximum likelihood analysis for the CPL models, exploring various scenarios across different cosmological parameter values. The results of this analysis are summarized in Table 2. Initially, we examine the case of GR, represented by b=0𝑏0b=0italic_b = 0, and then extend the analysis to include the meVSL models, where b𝑏bitalic_b is allowed to vary. Unlike the ω𝜔\omegaitalic_ωCDM models, obtaining viable values for Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT from this analysis without any prior constraints proves challenging. Therefore, we choose to exclusively perform the maximum likelihood analysis for fixed values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT.

Table 2: Presented below are the best-fit values and their corresponding 1-σ𝜎\sigmaitalic_σ errors for cosmological parameters in CPL models. Only models highlighted in green (or cyan) indicate the potential for exhibiting time variations in the speed of light. The b𝑏bitalic_b values highlighted in green indicate negative values, and those in cyan indicate positive values. These represent a clear monotonic decrease or increase in the speed of light with cosmic time, respectively.
{adjustwidth*}
Models M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT hhitalic_h b𝑏bitalic_b ν𝜈\nuitalic_ν χν2superscriptsubscript𝜒𝜈2\chi_{\nu}^{2}italic_χ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
b=0𝑏0b=0italic_b = 0 19.3617±0.2914plus-or-minus19.36170.2914-19.3617\pm 0.2914- 19.3617 ± 0.2914 11-1- 1 1.36±0.42plus-or-minus1.360.421.36\pm 0.421.36 ± 0.42 0.163±0.054plus-or-minus0.1630.0540.163\pm 0.0540.163 ± 0.054 0.704±0.094plus-or-minus0.7040.0940.704\pm 0.0940.704 ± 0.094 00 1044104410441044 0.9870.9870.9870.987
19.3582±0.2915plus-or-minus19.35820.2915-19.3582\pm 0.2915- 19.3582 ± 0.2915 1.22±0.15plus-or-minus1.220.15-1.22\pm 0.15- 1.22 ± 0.15 00 0.348±0.036plus-or-minus0.3480.0360.348\pm 0.0360.348 ± 0.036 0.704±0.094plus-or-minus0.7040.0940.704\pm 0.0940.704 ± 0.094 00 1044104410441044 0.9880.9880.9880.988
VI.1 19.3325±0.0908plus-or-minus19.33250.0908-19.3325\pm 0.0908- 19.3325 ± 0.0908 0.76±0.02plus-or-minus0.760.02-0.76\pm 0.02- 0.76 ± 0.02 1.30±0.25plus-or-minus1.300.251.30\pm 0.251.30 ± 0.25 0.062±0.068plus-or-minus0.0620.068-0.062\pm 0.068- 0.062 ± 0.068 0.712±0.030plus-or-minus0.7120.0300.712\pm 0.0300.712 ± 0.030 00 1043104310431043 0.9880.9880.9880.988
b0𝑏0b\neq 0italic_b ≠ 0 19.2231±0.1985plus-or-minus19.22310.1985-19.2231\pm 0.1985- 19.2231 ± 0.1985 11-1- 1 1.44±0.08plus-or-minus1.440.081.44\pm 0.081.44 ± 0.08 0.102±0.065plus-or-minus0.1020.065-0.102\pm 0.065- 0.102 ± 0.065 0.748±0.068plus-or-minus0.7480.0680.748\pm 0.0680.748 ± 0.068 0.464±0.156plus-or-minus0.4640.1560.464\pm 0.1560.464 ± 0.156 1043104310431043 0.9880.9880.9880.988
VI.2 19.5513±0.1284plus-or-minus19.55130.1284-19.5513\pm 0.1284- 19.5513 ± 0.1284 1.22±0.04plus-or-minus1.220.04-1.22\pm 0.04- 1.22 ± 0.04 00 0.335±0.088plus-or-minus0.3350.0880.335\pm 0.0880.335 ± 0.088 0.644±0.038plus-or-minus0.6440.0380.644\pm 0.0380.644 ± 0.038 0.022±0.176plus-or-minus0.0220.1760.022\pm 0.1760.022 ± 0.176 1043104310431043 0.9890.9890.9890.989
ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95 19.4115±0.2313plus-or-minus19.41150.2313-19.4115\pm 0.2313- 19.4115 ± 0.2313 1.85±0.22plus-or-minus1.850.221.85\pm 0.221.85 ± 0.22 0.280.280.280.28 0.688±0.073plus-or-minus0.6880.0730.688\pm 0.0730.688 ± 0.073 0.273±0.014plus-or-minus0.2730.014\pagecolor{green}-0.273\pm 0.014- 0.273 ± 0.014 1044104410441044 0.9870.9870.9870.987
19.4065±0.2324plus-or-minus19.40650.2324-19.4065\pm 0.2324- 19.4065 ± 0.2324 1.90±0.23plus-or-minus1.900.231.90\pm 0.231.90 ± 0.23 0.290.290.290.29 0.690±0.074plus-or-minus0.6900.0740.690\pm 0.0740.690 ± 0.074 0.291±0.014plus-or-minus0.2910.014-0.291\pm 0.014- 0.291 ± 0.014 1044104410441044 0.9870.9870.9870.987
19.4110±0.2328plus-or-minus19.41100.2328-19.4110\pm 0.2328- 19.4110 ± 0.2328 0.950.95-0.95- 0.95 1.95±0.23plus-or-minus1.950.231.95\pm 0.231.95 ± 0.23 0.300.300.300.30 0.689±0.074plus-or-minus0.6890.0740.689\pm 0.0740.689 ± 0.074 0.309±0.014plus-or-minus0.3090.014-0.309\pm 0.014- 0.309 ± 0.014 1044104410441044 0.9870.9870.9870.987
19.4114±0.2335plus-or-minus19.41140.2335-19.4114\pm 0.2335- 19.4114 ± 0.2335 2.01±0.24plus-or-minus2.010.242.01\pm 0.242.01 ± 0.24 0.310.310.310.31 0.689±0.074plus-or-minus0.6890.0740.689\pm 0.0740.689 ± 0.074 0.326±0.014plus-or-minus0.3260.014-0.326\pm 0.014- 0.326 ± 0.014 1044104410441044 0.9870.9870.9870.987
VI.3 19.4119±0.2342plus-or-minus19.41190.2342-19.4119\pm 0.2342- 19.4119 ± 0.2342 2.07±0.24plus-or-minus2.070.242.07\pm 0.242.07 ± 0.24 0.320.320.320.32 0.688±0.074plus-or-minus0.6880.0740.688\pm 0.0740.688 ± 0.074 0.344±0.014plus-or-minus0.3440.014-0.344\pm 0.014- 0.344 ± 0.014 1044104410441044 0.9870.9870.9870.987
ω0=1.0subscript𝜔01.0\omega_{0}=-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.0 19.4108±0.2322plus-or-minus19.41080.2322-19.4108\pm 0.2322- 19.4108 ± 0.2322 1.73±0.23plus-or-minus1.730.231.73\pm 0.231.73 ± 0.23 0.280.280.280.28 0.689±0.074plus-or-minus0.6890.0740.689\pm 0.0740.689 ± 0.074 0.215±0.015plus-or-minus0.2150.015\pagecolor{green}-0.215\pm 0.015- 0.215 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.3848±0.2349plus-or-minus19.38480.2349-19.3848\pm 0.2349- 19.3848 ± 0.2349 1.79±0.24plus-or-minus1.790.241.79\pm 0.241.79 ± 0.24 0.290.290.290.29 0.697±0.075plus-or-minus0.6970.0750.697\pm 0.0750.697 ± 0.075 0.235±0.015plus-or-minus0.2350.015-0.235\pm 0.015- 0.235 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.4036±0.2344plus-or-minus19.40360.2344-19.4036\pm 0.2344- 19.4036 ± 0.2344 1.01.0-1.0- 1.0 1.85±0.24plus-or-minus1.850.241.85\pm 0.241.85 ± 0.24 0.300.300.300.30 0.691±0.075plus-or-minus0.6910.0750.691\pm 0.0750.691 ± 0.075 0.255±0.015plus-or-minus0.2550.015-0.255\pm 0.015- 0.255 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.4100±0.2346plus-or-minus19.41000.2346-19.4100\pm 0.2346- 19.4100 ± 0.2346 1.91±0.24plus-or-minus1.910.241.91\pm 0.241.91 ± 0.24 0.310.310.310.31 0.689±0.074plus-or-minus0.6890.0740.689\pm 0.0740.689 ± 0.074 0.274±0.015plus-or-minus0.2740.015-0.274\pm 0.015- 0.274 ± 0.015 1044104410441044 0.9880.9880.9880.988
VI.4 19.4107±0.2353plus-or-minus19.41070.2353-19.4107\pm 0.2353- 19.4107 ± 0.2353 1.97±0.25plus-or-minus1.970.251.97\pm 0.251.97 ± 0.25 0.320.320.320.32 0.689±0.075plus-or-minus0.6890.0750.689\pm 0.0750.689 ± 0.075 0.293±0.015plus-or-minus0.2930.015-0.293\pm 0.015- 0.293 ± 0.015 1044104410441044 0.9880.9880.9880.988
ω0=1.05subscript𝜔01.05\omega_{0}=-1.05italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.05 19.4038±0.2339plus-or-minus19.40380.2339-19.4038\pm 0.2339- 19.4038 ± 0.2339 1.57±0.24plus-or-minus1.570.241.57\pm 0.241.57 ± 0.24 0.280.280.280.28 0.691±0.074plus-or-minus0.6910.0740.691\pm 0.0740.691 ± 0.074 0.154±0.015plus-or-minus0.1540.015\pagecolor{green}-0.154\pm 0.015- 0.154 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.4076±0.2344plus-or-minus19.40760.2344-19.4076\pm 0.2344- 19.4076 ± 0.2344 1.62±0.25plus-or-minus1.620.251.62\pm 0.251.62 ± 0.25 0.290.290.290.29 0.689±0.074plus-or-minus0.6890.0740.689\pm 0.0740.689 ± 0.074 0.175±0.015plus-or-minus0.1750.015-0.175\pm 0.015- 0.175 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.4079±0.2351plus-or-minus19.40790.2351-19.4079\pm 0.2351- 19.4079 ± 0.2351 1.051.05-1.05- 1.05 1.68±0.25plus-or-minus1.680.251.68\pm 0.251.68 ± 0.25 0.300.300.300.30 0.689±0.075plus-or-minus0.6890.0750.689\pm 0.0750.689 ± 0.075 0.195±0.015plus-or-minus0.1950.015-0.195\pm 0.015- 0.195 ± 0.015 1044104410441044 0.9880.9880.9880.988
19.4096±0.2356plus-or-minus19.40960.2356-19.4096\pm 0.2356- 19.4096 ± 0.2356 1.73±0.25plus-or-minus1.730.251.73\pm 0.251.73 ± 0.25 0.310.310.310.31 0.689±0.075plus-or-minus0.6890.0750.689\pm 0.0750.689 ± 0.075 0.213±0.015plus-or-minus0.2130.015-0.213\pm 0.015- 0.213 ± 0.015 1044104410441044 0.9880.9880.9880.988
VI.5 19.4082±0.2367plus-or-minus19.40820.2367-19.4082\pm 0.2367- 19.4082 ± 0.2367 1.84±0.26plus-or-minus1.840.261.84\pm 0.261.84 ± 0.26 0.320.320.320.32 0.690±0.075plus-or-minus0.6900.0750.690\pm 0.0750.690 ± 0.075 0.240±0.015plus-or-minus0.2400.015-0.240\pm 0.015- 0.240 ± 0.015 1044104410441044 0.9880.9880.9880.988
fixing Ωm0subscriptΩ𝑚0\Omega_{m0}roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT 19.3499±0.1176plus-or-minus19.34990.1176-19.3499\pm 0.1176- 19.3499 ± 0.1176 1.18±0.04plus-or-minus1.180.04-1.18\pm 0.04- 1.18 ± 0.04 0.72±0.23plus-or-minus0.720.230.72\pm 0.230.72 ± 0.23 0.280.280.280.28 0.707±0.038plus-or-minus0.7070.0380.707\pm 0.0380.707 ± 0.038 0.038±0.015plus-or-minus0.0380.015\pagecolor{cyan}0.038\pm 0.0150.038 ± 0.015 1043104310431043 0.9880.9880.9880.988
19.3465±0.1199plus-or-minus19.34650.1199-19.3465\pm 0.1199- 19.3465 ± 0.1199 1.18±0.04plus-or-minus1.180.04-1.18\pm 0.04- 1.18 ± 0.04 0.76±0.25plus-or-minus0.760.250.76\pm 0.250.76 ± 0.25 0.300.300.300.30 0.708±0.039plus-or-minus0.7080.0390.708\pm 0.0390.708 ± 0.039 0.001±0.015plus-or-minus0.0010.0150.001\pm 0.0150.001 ± 0.015 1043104310431043 0.9890.9890.9890.989
VI.6 19.3478±0.1225plus-or-minus19.34780.1225-19.3478\pm 0.1225- 19.3478 ± 0.1225 1.20±0.04plus-or-minus1.200.04-1.20\pm 0.04- 1.20 ± 0.04 0.71±0.26plus-or-minus0.710.260.71\pm 0.260.71 ± 0.26 0.320.320.320.32 0.708±0.040plus-or-minus0.7080.0400.708\pm 0.0400.708 ± 0.040 0.024±0.015plus-or-minus0.0240.015-0.024\pm 0.015- 0.024 ± 0.015 1043104310431043 0.9890.9890.9890.989
fixing h 19.4544±0.0072plus-or-minus19.45440.0072-19.4544\pm 0.0072- 19.4544 ± 0.0072 0.99±0.02plus-or-minus0.990.02-0.99\pm 0.02- 0.99 ± 0.02 1.31±0.11plus-or-minus1.310.111.31\pm 0.111.31 ± 0.11 0.033±0.061plus-or-minus0.0330.0610.033\pm 0.0610.033 ± 0.061 0.67360.67360.67360.6736 0.207±0.120plus-or-minus0.2070.1200.207\pm 0.1200.207 ± 0.120 1043104310431043 0.9880.9880.9880.988
VI.7 19.2475±0.0078plus-or-minus19.24750.0078-19.2475\pm 0.0078- 19.2475 ± 0.0078 0.99±0.01plus-or-minus0.990.01-0.99\pm 0.01- 0.99 ± 0.01 1.45±0.07plus-or-minus1.450.071.45\pm 0.071.45 ± 0.07 0.112±0.036plus-or-minus0.1120.036-0.112\pm 0.036- 0.112 ± 0.036 0.740.740.740.74 0.460±0.094plus-or-minus0.4600.0940.460\pm 0.0940.460 ± 0.094 1043104310431043 0.9880.9880.9880.988
No fixing 19.3500±0.0857plus-or-minus19.35000.0857-19.3500\pm 0.0857- 19.3500 ± 0.0857 0.76±0.02plus-or-minus0.760.02-0.76\pm 0.02- 0.76 ± 0.02 1.30±0.10plus-or-minus1.300.101.30\pm 0.101.30 ± 0.10 0.054±0.086plus-or-minus0.0540.086-0.054\pm 0.086- 0.054 ± 0.086 0.706±0.028plus-or-minus0.7060.0280.706\pm 0.0280.706 ± 0.028 0.023±0.108plus-or-minus0.0230.108-0.023\pm 0.108- 0.023 ± 0.108 1042104210421042 0.9890.9890.9890.989

VI.1 b=0𝑏0b=0italic_b = 0

We investigate CPL models within the framework of GR, initially setting b=0𝑏0b=0italic_b = 0. We analyze three scenarios: ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1, ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0, and without fixing ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT. When ω0=1.0subscript𝜔01.0\omega_{0}=-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.0, the range of ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT spans 0.94ωa1.780.94subscript𝜔𝑎1.780.94\leq\omega_{a}\leq 1.780.94 ≤ italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ 1.78, while Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ranges from 0.1090.1090.1090.109 to 0.2170.2170.2170.217 at the 68% confidence level. For the ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0 model, constraints at the 68% confidence level are 0.312Ωm00.3840.312subscriptΩm00.3840.312\leq\Omega_{\text{m}0}\leq 0.3840.312 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.384, 1.37ω01.071.37subscript𝜔01.07-1.37\leq\omega_{0}\leq-1.07- 1.37 ≤ italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ - 1.07, and 0.610h0.7980.610h0.7980.610\leq\textrm{h}\leq 0.7980.610 ≤ h ≤ 0.798.

However, allowing ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT to vary yields excessively small values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, making them impractical as viable models. Permitting both ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT to vary, the ranges of cosmological parameters at the 68% confidence level are 0.78ω00.740.78subscript𝜔00.74-0.78\leq\omega_{0}\leq-0.74- 0.78 ≤ italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ - 0.74, 1.05ωa1.551.05subscript𝜔𝑎1.551.05\leq\omega_{a}\leq 1.551.05 ≤ italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ 1.55, and 0.13Ωm00.0060.13subscriptΩm00.006-0.13\leq\Omega_{\text{m}0}\leq 0.006- 0.13 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.006. Negative values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT arise from statistical analysis, but physically, negative mass is not meaningful in the SMC. Therefore, we exclude consideration of this model.

Next, we explore meVSL models employing the CPL parameterization of dark energy, where b0𝑏0b\neq 0italic_b ≠ 0.

VI.2 Fixing ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 or ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0

First, fixing ω0=1subscript𝜔01\omega_{0}=-1italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1 and allowing other variables to vary, we obtain the values of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, ω𝜔\omegaitalic_ω, Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, hhitalic_h, and b𝑏bitalic_b within the 1-σ𝜎\sigmaitalic_σ confidence level as (19.4216,19.024619.421619.0246-19.4216\,,-19.0246- 19.4216 , - 19.0246), (1.36,1.521.361.52-1.36\,,-1.52- 1.36 , - 1.52), (0.167,0.0370.1670.037-0.167\,,-0.037- 0.167 , - 0.037), (0.68,0.8160.680.8160.68\,,0.8160.68 , 0.816), and (0.308,0.620.3080.620.308\,,0.620.308 , 0.62), respectively. Since this model also yields negative Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, we exclude consideration of this model.

Next, fixing ωa=0subscript𝜔𝑎0\omega_{a}=0italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0 and allowing other variables to vary, we conduct a maximum likelihood analysis. In this case, we obtain the values of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, ω𝜔\omegaitalic_ω, Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, hhitalic_h, and b𝑏bitalic_b within the 1-σ𝜎\sigmaitalic_σ confidence level as (19.6797,19.422919.679719.4229-19.6797\,,-19.4229- 19.6797 , - 19.4229), (1.26,1.181.261.18-1.26\,,-1.18- 1.26 , - 1.18), (0.247,0.4230.2470.4230.247\,,0.4230.247 , 0.423), (0.606,0.6820.6060.6820.606\,,0.6820.606 , 0.682), and (0.154,0.1980.1540.198-0.154\,,0.198- 0.154 , 0.198), respectively. This model exhibits a relatively small value of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT compared to other models.

VI.3 ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95 with fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

We perform a maximum likelihood analysis for models with ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95, while varying Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT from 0.280.280.280.28 to 0.320.320.320.32. Across these models, the best-fit values of h consistently hover around 0.690.690.690.69, with a 1-σ𝜎\sigmaitalic_σ error margin of 0.070.070.070.07. With increasing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, the best-fit value of ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT also rises, whereas the best-fit values of b𝑏bitalic_b decline.

At a 68% confidence level, all values of b𝑏bitalic_b fall into the negative range for the specified Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT range, spanning from 0.3440.344-0.344- 0.344 to 0.2730.273-0.273- 0.273. This suggests that the speed of light decreases monotonically over cosmic time, with its rate of decrease accelerating as Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT increases.

At z=3𝑧3z=3italic_z = 3, the speed of light can exceed c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by approximately 1013superscript101310^{13}10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT% when Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ranges from 0.280.280.280.28 to 0.320.320.320.32. The 1-σ𝜎\sigmaitalic_σ ranges of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) are (5.05,4.555.054.55-5.05\,,-4.55- 5.05 , - 4.55)  , (5.38,4.885.384.88-5.38\,,-4.88- 5.38 , - 4.88)  , (5.69,5.205.695.20-5.69\,,-5.20- 5.69 , - 5.20)  , (5.99,5.505.995.50-5.99\,,-5.50- 5.99 , - 5.50)  , and (6.31,5.826.315.82-6.31\,,-5.82- 6.31 , - 5.82), respectively.

VI.4 ω0=1.0subscript𝜔01.0\omega_{0}=-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.0 with fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

We conduct an extensive analysis focusing on ω0=1.0subscript𝜔01.0\omega_{0}=-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.0 models. Across these models, the best-fit values of h range from 0.6890.6890.6890.689 to 0.6970.6970.6970.697 for the specified values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT. Meanwhile, the best-fit values of ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and b𝑏bitalic_b span 1.73ωa1.971.73subscript𝜔𝑎1.971.73\leq\omega_{a}\leq 1.971.73 ≤ italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≤ 1.97 and 0.293b0.2150.293𝑏0.215-0.293\leq b\leq-0.215- 0.293 ≤ italic_b ≤ - 0.215, respectively.

Similar to the ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95 models, the best-fit values of b𝑏bitalic_b decrease with increasing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, with all b𝑏bitalic_b-values falling into the negative range at a 68% confidence level. This indicates a monotonically decreasing trend in the speed of light over cosmic time in these models. Notably, compared to the ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95 model, the ω0=1.0subscript𝜔01.0\omega_{0}=-1.0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.0 model exhibits a slightly slower rate of decrease in the speed of light.

At z=3𝑧3z=3italic_z = 3, the speed of light exceeds c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by approximately 8×108108\times 108 × 10% when Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ranges from 0.280.280.280.28 to 0.320.320.320.32. Furthermore, the 1-σ𝜎\sigmaitalic_σ ranges of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) are (4.05,3.524.053.52-4.05\,,-3.52- 4.05 , - 3.52)  , (-4.45,3.924.453.924.45\,,-3.924.45 , - 3.92)  , (4.77,4.244.774.24-4.77\,,-4.24- 4.77 , - 4.24)  , (5.09,4.565.094.56-5.09\,,-4.56- 5.09 , - 4.56)  , and (5.42,4.895.424.89-5.42\,,-4.89- 5.42 , - 4.89), respectively.

VI.5 ω0=1.05subscript𝜔01.05\omega_{0}=-1.05italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.05 with fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

In this subsection, we perform a maximum likelihood analysis for models with ω0=1.05subscript𝜔01.05\omega_{0}=-1.05italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 1.05. Across these models, the best-fit values of hhitalic_h consistently hover around 0.690.690.690.69 for all specified values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT. The range of best-fit values for ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT spans from 1.571.571.571.57 to 1.841.841.841.84, while for b𝑏bitalic_b, it extends from 0.2400.240-0.240- 0.240 to 0.1540.154-0.154- 0.154. Similar to previous models, the values of b𝑏bitalic_b decrease with increasing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, ranging from 0.1690.169-0.169- 0.169 to 0.1390.139-0.139- 0.139 for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 and from 0.2550.255-0.255- 0.255 to 0.2250.225-0.225- 0.225 for Ωm0=0.32subscriptΩm00.32\Omega_{\text{m}0}=0.32roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.32 within a 1-σ𝜎\sigmaitalic_σ error. Thus, the speed of light continues its monotonic decrease over cosmic time in these models. At z=3𝑧3z=3italic_z = 3, c𝑐citalic_c can exceed c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by approximately 6%percent66\%6 % (9%percent99\%9 %) for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 (0.320.320.320.32). Compared to the ω0=0.95subscript𝜔00.95\omega_{0}=-0.95italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.95 and 1.01.0-1.0- 1.0 models, the rate of decrease in the speed of light is slightly smaller in this model. The 1-σ𝜎\sigmaitalic_σ ranges of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) are (2.98,2.452.982.45-2.98\,,-2.45- 2.98 , - 2.45), (3.44,2.823.442.82-3.44\,,-2.82- 3.44 , - 2.82), (3.70,3.173.703.17-3.70\,,-3.17- 3.70 , - 3.17), (4.01,3.494.013.49-4.01\,,-3.49- 4.01 , - 3.49), and (4.50,3.974.503.97-4.50\,,-3.97- 4.50 , - 3.97), respectively.

VI.6 CPL with fixing Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT

We analyze the Pantheon data without constraining values of ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT within the range 0.28Ωm00.320.28subscriptΩm00.320.28\leq\Omega_{\text{m}0}\leq 0.320.28 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.32. Across these models, the best-fit values of hhitalic_h remain approximately constant at 0.710.710.710.71 for all specified values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT. The best-fit values of both ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT range as (1.18,0.721.180.72-1.18\,,0.72- 1.18 , 0.72), (1.18,0.761.180.76-1.18\,,0.76- 1.18 , 0.76), and (1.20,0.711.200.71-1.20\,,0.71- 1.20 , 0.71) for Ωm0=0.28,0.30subscriptΩm00.280.30\Omega_{\text{m}0}=0.28,0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 , 0.30, and 0.320.320.320.32, respectively. Of particular interest is the model with Ωm0=0.30subscriptΩm00.30\Omega_{\text{m}0}=0.30roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.30, where the best-fit value of b𝑏bitalic_b is nearly zero, varying within the range 0.0150.015-0.015- 0.015 to 0.0150.0150.0150.015 at a 68686868 % confidence level. This suggests no significant time variation in the speed of light in this model. However, for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 and 0.320.320.320.32, the 1-σ𝜎\sigmaitalic_σ values of b𝑏bitalic_b indicate a clear monotonic decrease (increase) in the speed of light with cosmic time, with ranges of 0.023b0.0530.023𝑏0.0530.023\leq b\leq 0.0530.023 ≤ italic_b ≤ 0.053 and 0.039b0.0090.039𝑏0.009-0.039\leq b\leq-0.009- 0.039 ≤ italic_b ≤ - 0.009, respectively.

These trends are illustrated in Fig. 2. In the left panel, the cosmological evolution of c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as a function of z𝑧zitalic_z for the Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28 model is depicted. The dashed line represents the best-fit value of b𝑏bitalic_b, while the solid lines indicate the 1-σ𝜎\sigmaitalic_σ errors. The monotonically decreasing behavior of c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with increasing redshift is evident due to the positive values of b𝑏bitalic_b. At z=3𝑧3z=3italic_z = 3, c𝑐citalic_c decreases by approximately 0.80.80.80.8 (1.81.81.81.8) % within 1-σ𝜎\sigmaitalic_σ error. The 1-σ𝜎\sigmaitalic_σ range of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (1013yr1superscript1013superscriptyr110^{-13}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) falls between 4.154.154.154.15 and 9.579.579.579.57 at a 68 % confidence level.

On the other hand, the right panel of Fig. 2 illustrates the model with Ωm0=0.32subscriptΩm00.32\Omega_{\text{m}0}=0.32roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.32, where both the best-fit and 1-σ𝜎\sigmaitalic_σ error values of b𝑏bitalic_b are negative. Consequently, c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT increases monotonically with redshift. At z=3𝑧3z=3italic_z = 3, c𝑐citalic_c increases by about 0.30.30.30.3 (1.41.41.41.4) % at a 68 % confidence level. The 1-σ𝜎\sigmaitalic_σ range of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (1013yr1superscript1013superscriptyr110^{-13}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) spans from (7.05,1.63)7.051.63(-7.05\,,-1.63)( - 7.05 , - 1.63 ).

Refer to caption Refer to caption
Figure 2: The ratios of c𝑐citalic_c to its present value, c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, are plotted as a function of redshift for different values of Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT. Panel (a) shows c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28, with the dashed line indicating the best-fit value and the solid lines representing the 1-σ𝜎\sigmaitalic_σ error range. Similarly, panel (b) displays c/c0𝑐subscript𝑐0c/c_{0}italic_c / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for Ωm0=0.32subscriptΩ𝑚00.32\Omega_{m0}=0.32roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT = 0.32, where the dashed line marks the best-fit value and the solid lines denote the 1-σ𝜎\sigmaitalic_σ errors.

VI.7 CPL with (without) fixing h

The analysis is conducted with fixed values of hhitalic_h while leaving other parameters unconstrained. For h=0.6736(0.74)absent0.67360.74=0.6736(0.74)= 0.6736 ( 0.74 ), the best-fit values and 1-σ𝜎\sigmaitalic_σ errors for ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT are 0.99±0.02(0.99±0.01)plus-or-minus0.990.02plus-or-minus0.990.01-0.99\pm 0.02(-0.99\pm 0.01)- 0.99 ± 0.02 ( - 0.99 ± 0.01 ) and 1.31±0.11(1.45±0.07)plus-or-minus1.310.11plus-or-minus1.450.071.31\pm 0.11(1.45\pm 0.07)1.31 ± 0.11 ( 1.45 ± 0.07 ), respectively. Notably, in these models, the values of b𝑏bitalic_b are positive. However, the resulting values for Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT fall outside of the viable range, yielding 0.028Ωm00.094(0.148Ωm00.076)0.028subscriptΩm00.0940.148subscriptΩm00.076-0.028\leq\Omega_{\text{m}0}\leq 0.094\,(-0.148\leq\Omega_{\text{m}0}\leq-0.076)- 0.028 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.094 ( - 0.148 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ - 0.076 ) for h=0.6736(0.74)0.67360.74h=0.6736\,(0.74)italic_h = 0.6736 ( 0.74 ), which are deemed nonviable. Moreover, without constraining Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT, the matter density contrast is estimated to be 0.14Ωm00.0320.14subscriptΩm00.032-0.14\leq\Omega_{\text{m}0}\leq 0.032- 0.14 ≤ roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT ≤ 0.032, again falling outside of acceptable bounds. These results underscore the importance of appropriately constraining cosmological parameters to ensure the viability of the models.

VII c˙˙𝑐\dot{c}over˙ start_ARG italic_c end_ARG and G˙˙𝐺\dot{G}over˙ start_ARG italic_G end_ARG

Expanding on the insights gained from previous subsections V and VI, we embark on an exploration of viable meVSL models across diverse dark energy scenarios, aiming to extract valuable constraints on both cosmological and model parameters. This analysis allows us to derive estimates for the temporal evolution of the speed of light, a fundamental aspect within the meVSL framework. Notably, in the meVSL paradigm, the speed of light undergoes cosmological evolution, mirroring the behavior of the gravitational constant, which is characterized by G=G0(1+z)b𝐺subscript𝐺0superscript1𝑧𝑏G=G_{0}(1+z)^{-b}italic_G = italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b end_POSTSUPERSCRIPT. By leveraging the constraints obtained on b𝑏bitalic_b-values, we can ascertain bounds on the present value of the relative temporal variation of the gravitational constant, G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

To place these findings within the broader context of observational constraints, we compare our results with existing bounds on G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from various sources, as summarized in Table 3. Notably, the analysis of lunar laser ranging (LLR) data stands out for its stringency, yielding the most stringent bounds on G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. In contrast, the orbital period rate of pulsars offers the widest bounds, estimated at 2.3×1011yr12.3superscript1011superscriptyr12.3\times 10^{-11}\,\text{yr}^{-1}2.3 × 10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Taken together, these observations suggest that G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is tentatively within the order of 1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Such insights not only deepen our understanding of cosmological dynamics but also pave the way for future investigations into the fundamental nature of physical constants.

Table 3: Table provides the latest 1-σ𝜎\sigmaitalic_σ observational constraints on the present rate of change of the gravitational constant, G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Here, ”WD” refers to white dwarf observations, ”BBN” signifies Big Bang nucleosynthesis, ”LLR” denotes lunar laser ranging data, and ”GWs” represents gravitational waves.
obs G˙0/G0(1012yr1)subscript˙𝐺0subscript𝐺0superscript1012superscriptyr1\dot{G}_{0}/G_{0}\,(10^{-12}\,\text{yr}^{-1})over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) Ref
pulsars 23 Verbiest:2008gy
WD cooling -1.8 GarciaBerro:2011wc
     pulsation -130 Corsico:2013ida
BBN 0.30.4similar-to0.30.4-0.3\sim 0.4- 0.3 ∼ 0.4 Bambi:2005fi
3.64.5similar-to3.64.5-3.6\sim 4.5- 3.6 ∼ 4.5 Alvey:2019ctk
LLR 0.50.9similar-to0.50.9-0.5\sim 0.9- 0.5 ∼ 0.9 Hofmann:2010
0.0050.147similar-to0.0050.147-0.005\sim 0.147- 0.005 ∼ 0.147 Hofmann:2018
SNe Ia 3073similar-to3073-30\sim 73- 30 ∼ 73 Mould:2014iga
3333 Zhao:2018gwk
GWs LIGO 70707070 Lagos:2019kds
        LISA 0.70.70.70.7 Belgacem:2019pkk

Table 4 displays the outcomes regarding the temporal variations of both the speed of light and the gravitational constant within meVSL models, considering various dark energy scenarios. We define Δc(z=3)Δ𝑐𝑧3\Delta c(z=3)roman_Δ italic_c ( italic_z = 3 ) as the percentage deviation between the speed of light’s value at redshift z=3𝑧3z=3italic_z = 3 and its current value, expressed as Δc(z=3)(c(z=3)c0)/c0×100(%)\Delta c(z=3)\equiv\left(c(z=3)-c_{0}\right)/c_{0}\times 100\,(\%)roman_Δ italic_c ( italic_z = 3 ) ≡ ( italic_c ( italic_z = 3 ) - italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT × 100 ( % ) within a 1-σ𝜎\sigmaitalic_σ uncertainty range. Similarly, ΔG(z=3)Δ𝐺𝑧3\Delta G(z=3)roman_Δ italic_G ( italic_z = 3 ) indicates the percentage deviation between the gravitational constant’s values at z=3𝑧3z=3italic_z = 3 and z=0𝑧0z=0italic_z = 0. The ratio of the temporal variation of the speed of light to its current value is denoted by c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, while G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT represents the current ratio of the gravitational constant’s temporal variation to its value.

In the analysis, positive values of the best-fit parameter b𝑏bitalic_b and its 68% confidence level values are only observed for the CPL dark energy model when Ωm0=0.28subscriptΩm00.28\Omega_{\text{m}0}=0.28roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT = 0.28. Consequently, both c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT exhibit positivity in this specific model. Conversely, all other viable models derived from the Pantheon data yield negative b𝑏bitalic_b values, resulting in negative values for both c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in these scenarios.

The values of c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are around 1013yr1superscript1013superscriptyr110^{-13}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, whereas G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT values are approximately 1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for ω𝜔\omegaitalic_ωCDM models and CPL models with varying ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, as detailed in Table 4. However, for CPL models with fixed ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the c˙0/c0subscript˙𝑐0subscript𝑐0\dot{c}_{0}/c_{0}over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT values are roughly 1012yr1superscript1012superscriptyr110^{-12}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, while G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT values tend to be around 1011yr1superscript1011superscriptyr110^{-11}\,\text{yr}^{-1}10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Despite having three different constraints on G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT derived from SNe Ia data, including this work, there are notable discrepancies among the results Mould:2014iga ; Zhao:2018gwk . These discrepancies stem from the varying methodologies and datasets used. For instance, one approach employs the standard candle method to define the redshift-distance relation, establishing a broad upper limit on |G˙/G|˙𝐺𝐺|\dot{G}/G|| over˙ start_ARG italic_G end_ARG / italic_G | and exploring various parameterizations and impacts Mould:2014iga . In contrast, another method focuses on the intrinsic properties of Type Ia supernovae (SNIa) and their dependency on the Chandrasekhar mass, MChG3/2proportional-tosubscript𝑀Chsuperscript𝐺32M_{\textrm{Ch}}\propto G^{-3/2}italic_M start_POSTSUBSCRIPT Ch end_POSTSUBSCRIPT ∝ italic_G start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT, to track the variation of G𝐺Gitalic_G across different redshifts Zhao:2018gwk . Expanding on the insights gained from previous subsections V and 3, we embark on an exploration of viable meVSL models across diverse dark energy scenarios, aiming to extract valuable constraints on both cosmological and model parameters. This analysis allows us to derive estimates for the temporal evolution of the speed of light, a fundamental aspect within the meVSL framework. Notably, in the meVSL paradigm, the speed of light undergoes cosmological evolution, mirroring the behavior of the gravitational constant, which is characterized by G=G0(1+z)b𝐺subscript𝐺0superscript1𝑧𝑏G=G_{0}(1+z)^{-b}italic_G = italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT - italic_b end_POSTSUPERSCRIPT. By leveraging the constraints obtained on b𝑏bitalic_b-values, we can ascertain bounds on the present value of the relative temporal variation of the gravitational constant, G˙0/G0subscript˙𝐺0subscript𝐺0\dot{G}_{0}/G_{0}over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

Table 4: Time variations of the speed of light and that of the gravitational constant at a 68 % confidence level for viable models. We denote A1013yr1𝐴superscript1013superscriptyr1A\equiv 10^{-13}\,\text{yr}^{-1}italic_A ≡ 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
{adjustwidth*}
ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT Δc(z=3)(%)\Delta c(z=3)\,(\%)roman_Δ italic_c ( italic_z = 3 ) ( % ) c˙0/c0[A]subscript˙𝑐0subscript𝑐0delimited-[]𝐴\dot{c}_{0}/c_{0}\,[A]over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ italic_A ] ΔG(z=3)(%)\Delta G(z=3)\,(\%)roman_Δ italic_G ( italic_z = 3 ) ( % ) G˙0/G0[10A]subscript˙𝐺0subscript𝐺0delimited-[]10𝐴\dot{G}_{0}/G_{0}\,[10A]over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ 10 italic_A ] M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT b𝑏bitalic_b
-1 0 0.300.300.300.30 0.21.7similar-to0.21.70.2\sim 1.70.2 ∼ 1.7 8.760.89similar-to8.760.89-8.76\sim-0.89- 8.76 ∼ - 0.89 0.77.0similar-to0.77.00.7\sim 7.00.7 ∼ 7.0 3.510.36similar-to3.510.36-3.51\sim-0.36- 3.51 ∼ - 0.36 19.3561±0.2899plus-or-minus19.35610.2899-19.3561\pm 0.2899- 19.3561 ± 0.2899 0.027±0.022plus-or-minus0.0270.022-0.027\pm 0.022- 0.027 ± 0.022
0.310.310.310.31 0.82.3similar-to0.82.30.8\sim 2.30.8 ∼ 2.3 1.180.39similar-to1.180.39-1.18\sim-0.39- 1.18 ∼ - 0.39 3.19.6similar-to3.19.63.1\sim 9.63.1 ∼ 9.6 4.721.57similar-to4.721.57-4.72\sim-1.57- 4.72 ∼ - 1.57 19.3563±0.2899plus-or-minus19.35630.2899-19.3563\pm 0.2899- 19.3563 ± 0.2899 0.044±0.022plus-or-minus0.0440.022-0.044\pm 0.022- 0.044 ± 0.022
0.320.320.320.32 1.42.9similar-to1.42.91.4\sim 2.91.4 ∼ 2.9 1.480.70similar-to1.480.70-1.48\sim-0.70- 1.48 ∼ - 0.70 5.612.2similar-to5.612.25.6\sim 12.25.6 ∼ 12.2 5.942.79similar-to5.942.79-5.94\sim-2.79- 5.94 ∼ - 2.79 19.3566±0.2898plus-or-minus19.35660.2898-19.3566\pm 0.2898- 19.3566 ± 0.2898 0.061±0.022plus-or-minus0.0610.022-0.061\pm 0.022- 0.061 ± 0.022
-0.95 1.85±0.22plus-or-minus1.850.221.85\pm 0.221.85 ± 0.22 0.280.280.280.28 9.410.5similar-to9.410.59.4\sim 10.59.4 ∼ 10.5 51.346.3similar-to51.346.3-51.3\sim-46.3- 51.3 ∼ - 46.3 43.248.9similar-to43.248.943.2\sim 48.943.2 ∼ 48.9 20.518.5similar-to20.518.5-20.5\sim-18.5- 20.5 ∼ - 18.5 19.4115±0.2313plus-or-minus19.41150.2313-19.4115\pm 0.2313- 19.4115 ± 0.2313 0.273±0.014plus-or-minus0.2730.014-0.273\pm 0.014- 0.273 ± 0.014
1.95±0.23plus-or-minus1.950.231.95\pm 0.231.95 ± 0.23 0.300.300.300.30 10.811.8similar-to10.811.810.8\sim 11.810.8 ∼ 11.8 57.852.8similar-to57.852.8-57.8\sim-52.8- 57.8 ∼ - 52.8 50.556.5similar-to50.556.550.5\sim 56.550.5 ∼ 56.5 23.121.1similar-to23.121.1-23.1\sim-21.1- 23.1 ∼ - 21.1 19.4110±0.2328plus-or-minus19.41100.2328-19.4110\pm 0.2328- 19.4110 ± 0.2328 0.309±0.014plus-or-minus0.3090.014-0.309\pm 0.014- 0.309 ± 0.014
2.07±0.24plus-or-minus2.070.242.07\pm 0.242.07 ± 0.24 0.320.320.320.32 12.113.2similar-to12.113.212.1\sim 13.212.1 ∼ 13.2 64.059.0similar-to64.059.0-64.0\sim-59.0- 64.0 ∼ - 59.0 58.064.3similar-to58.064.358.0\sim 64.358.0 ∼ 64.3 25.623.6similar-to25.623.6-25.6\sim-23.6- 25.6 ∼ - 23.6 19.4119±0.2342plus-or-minus19.41190.2342-19.4119\pm 0.2342- 19.4119 ± 0.2342 0.344±0.014plus-or-minus0.3440.014-0.344\pm 0.014- 0.344 ± 0.014
-1.0 1.73±0.23plus-or-minus1.730.231.73\pm 0.231.73 ± 0.23 0.280.280.280.28 7.28.3similar-to7.28.37.2\sim 8.37.2 ∼ 8.3 41.135.8similar-to41.135.8-41.1\sim-35.8- 41.1 ∼ - 35.8 32.037.6similar-to32.037.632.0\sim 37.632.0 ∼ 37.6 16.514.3similar-to16.514.3-16.5\sim-14.3- 16.5 ∼ - 14.3 19.4108±0.2322plus-or-minus19.41080.2322-19.4108\pm 0.2322- 19.4108 ± 0.2322 0.215±0.015plus-or-minus0.2150.015-0.215\pm 0.015- 0.215 ± 0.015
1.85±0.24plus-or-minus1.850.241.85\pm 0.241.85 ± 0.24 0.300.300.300.30 8.79.8similar-to8.79.88.7\sim 9.88.7 ∼ 9.8 48.342.9similar-to48.342.9-48.3\sim-42.9- 48.3 ∼ - 42.9 39.545.4similar-to39.545.439.5\sim 45.439.5 ∼ 45.4 19.317.2similar-to19.317.2-19.3\sim-17.2- 19.3 ∼ - 17.2 19.4036±0.2344plus-or-minus19.40360.2344-19.4036\pm 0.2344- 19.4036 ± 0.2344 0.255±0.015plus-or-minus0.2550.015-0.255\pm 0.015- 0.255 ± 0.015
1.97±0.25plus-or-minus1.970.251.97\pm 0.251.97 ± 0.25 0.320.320.320.32 10.111.3similar-to10.111.310.1\sim 11.310.1 ∼ 11.3 55.149.7similar-to55.149.7-55.1\sim-49.7- 55.1 ∼ - 49.7 47.053.2similar-to47.053.247.0\sim 53.247.0 ∼ 53.2 22.019.9similar-to22.019.9-22.0\sim-19.9- 22.0 ∼ - 19.9 19.4107±0.2353plus-or-minus19.41070.2353-19.4107\pm 0.2353- 19.4107 ± 0.2353 0.293±0.015plus-or-minus0.2930.015-0.293\pm 0.015- 0.293 ± 0.015
-1.05 1.57±0.24plus-or-minus1.570.241.57\pm 0.241.57 ± 0.24 0.280.280.280.28 4.96.0similar-to4.96.04.9\sim 6.04.9 ∼ 6.0 30.224.9similar-to30.224.9-30.2\sim-24.9- 30.2 ∼ - 24.9 21.326.4similar-to21.326.421.3\sim 26.421.3 ∼ 26.4 12.19.9similar-to12.19.9-12.1\sim-9.9- 12.1 ∼ - 9.9 19.4038±0.2339plus-or-minus19.40380.2339-19.4038\pm 0.2339- 19.4038 ± 0.2339 0.154±0.015plus-or-minus0.1540.015-0.154\pm 0.015- 0.154 ± 0.015
1.68±0.25plus-or-minus1.680.251.68\pm 0.251.68 ± 0.25 0.300.300.300.30 6.47.5similar-to6.47.56.4\sim 7.56.4 ∼ 7.5 37.632.2similar-to37.632.2-37.6\sim-32.2- 37.6 ∼ - 32.2 28.333.8similar-to28.333.828.3\sim 33.828.3 ∼ 33.8 15.012.9similar-to15.012.9-15.0\sim-12.9- 15.0 ∼ - 12.9 19.4079±0.2351plus-or-minus19.40790.2351-19.4079\pm 0.2351- 19.4079 ± 0.2351 0.195±0.015plus-or-minus0.1950.015-0.195\pm 0.015- 0.195 ± 0.015
1.84±0.26plus-or-minus1.840.261.84\pm 0.261.84 ± 0.26 0.320.320.320.32 8.19.2similar-to8.19.28.1\sim 9.28.1 ∼ 9.2 45.640.2similar-to45.640.2-45.6\sim-40.2- 45.6 ∼ - 40.2 36.642.4similar-to36.642.436.6\sim 42.436.6 ∼ 42.4 18.216.1similar-to18.216.1-18.2\sim-16.1- 18.2 ∼ - 16.1 19.4082±0.2367plus-or-minus19.40820.2367-19.4082\pm 0.2367- 19.4082 ± 0.2367 0.240±0.015plus-or-minus0.2400.015-0.240\pm 0.015- 0.240 ± 0.015
1.18±0.04plus-or-minus1.180.04-1.18\pm 0.04- 1.18 ± 0.04 0.72±0.23plus-or-minus0.720.230.72\pm 0.230.72 ± 0.23 0.280.280.280.28 0.81.8similar-to0.81.80.8\sim 1.80.8 ∼ 1.8 4.119..48similar-to4.119..484.11\sim 9..484.11 ∼ 9..48 3.17.1similar-to3.17.13.1\sim 7.13.1 ∼ 7.1 1.653.79similar-to1.653.791.65\sim 3.791.65 ∼ 3.79 19.3499±0.1176plus-or-minus19.34990.1176-19.3499\pm 0.1176- 19.3499 ± 0.1176 0.038±0.015plus-or-minus0.0380.0150.038\pm 0.0150.038 ± 0.015
1.20±0.04plus-or-minus1.200.04-1.20\pm 0.04- 1.20 ± 0.04 0.71±0.26plus-or-minus0.710.260.71\pm 0.260.71 ± 0.26 0.320.320.320.32 0.31.4similar-to0.31.40.3\sim 1.40.3 ∼ 1.4 6.981.61similar-to6.981.61-6.98\sim-1.61- 6.98 ∼ - 1.61 1.35.6similar-to1.35.61.3\sim 5.61.3 ∼ 5.6 2.790.64similar-to2.790.64-2.79\sim-0.64- 2.79 ∼ - 0.64 19.3478±0.1225plus-or-minus19.34780.1225-19.3478\pm 0.1225- 19.3478 ± 0.1225 0.024±0.015plus-or-minus0.0240.015-0.024\pm 0.015- 0.024 ± 0.015

VIII Discussion

The Pantheon+++ data provides constraints on cosmological and model parameters with a statistical precision of about 10%. Leveraging this dataset, we perform a maximum likelihood analysis to constrain dark energy models within the framework of the modified varying speed of light (meVSL) model. This analysis allows us to identify several viable ω𝜔\omegaitalic_ωCDM and CPL dark energy models and derive constraints on the parameter b𝑏bitalic_b, which governs the evolution of physical constants in the Universe.

The constraints obtained from our analysis indicate that the relative temporal variations of the speed of light and the gravitational constant lie within the ranges 64.0c˙0/c0(1013yr1)0.3964.0subscript˙𝑐0subscript𝑐0superscript1013superscriptyr10.39-64.0\leq\dot{c}_{0}/c_{0}\,(10^{-13}\,\text{yr}^{-1})\leq-0.39- 64.0 ≤ over˙ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ≤ - 0.39 and 25.6G˙0/G0(1012yr1)0.3625.6subscript˙𝐺0subscript𝐺0superscript1012superscriptyr10.36-25.6\leq\dot{G}_{0}/G_{0}\,(10^{-12}\,\text{yr}^{-1})\leq-0.36- 25.6 ≤ over˙ start_ARG italic_G end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ≤ - 0.36, respectively, for most viable models. These findings suggest that, according to the current Pantheon data, both the speed of light and the gravitational constant were greater in the past and have decreased monotonically with redshift, z𝑧zitalic_z.

Among the CPL models we considered, some do not require a dark matter energy density. We understand this phenomenon as a result of the degeneracy between ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT. We focused our viable model consideration on meVSL models where the cosmological parameters closely match those of the Standard Cosmological Model (SCM). However, models with Ωm0subscriptΩm0\Omega_{\text{m}0}roman_Ω start_POSTSUBSCRIPT m 0 end_POSTSUBSCRIPT approaching zero could become an interesting topic of study, requiring a deeper understanding and further research. For the purposes of this paper, we defer to the references cited within the main text to substantiate these points.

While additional cosmological observations, such as those from the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO), could provide further constraints on cosmological and model parameters, integrating these datasets would necessitate a reanalysis within the theoretical framework of the meVSL model. This comprehensive task falls outside the scope of the present manuscript and is deferred to future investigations. Future studies incorporating CMB and BAO data could significantly refine the constraints on the parameters governing the evolution of physical constants, thereby enhancing our understanding of the meVSL model and its implications for cosmology.

Acknowledgments

This research was funded by the National Research Foundation of Korea (NRF), funded both by the Ministry of Science, ICT, and Future Planning (Grant No. NRF-2019R1A6A1A10073079) and by the Ministry of Education (Grant No. NRF-RS202300243411). S. L. thanks the editor for the invitation to publish this manuscript in the Universe and for their helpful and constructive comments.

References

  • (1) Duff, M.J.; Okun, L.B.; Veneziano, G. Trialogue on the number of fundamental constants. JHEP 2002, 03, 023. https://doi.org/10.1088/1126-6708/2002/03/023.
  • (2) Uzan, J.P. The Fundamental Constants and Their Variation: Observational Status and Theoretical Motivations. Rev. Mod. Phys. 2003, 75, 403. https://doi.org/10.1103/RevModPhys.75.403.
  • (3) Ellis, G.F.R.; Uzan, J.P. c is the speed of light, isn’t it? Am. J. Phys. 2005, 73, 240–247. https://doi.org/10.1119/1.1819929.
  • (4) Duff, M.J. How fundamental are fundamental constants? Contemp. Phys. 2015, 56, 35–47. https://doi.org/10.1080/00107514.2014.980093.
  • (5) Lee, S. “The minimally extended Varying Speed of Light (meVSL),” JCAP 08, 054 (2021) doi:10.1088/1475-7516/2021/08/054 [arXiv:2011.09274 [astro-ph.CO]].
  • (6) Lee, S. “A Viable Varying Speed of Light Model in the RW Metric,” Found. Phys. 53, 40 (2023) doi:10.1007/s10701-023-00682-1 [arXiv:2303.13772 [physics.gen-ph]].
  • (7) Lee, S. ”Review on Minimally Extended Varying Speed of Light Model.” Particles 7, 309-326 (2024) doi.org/10.3390/particles7020019.
  • (8) Islam, J.N. An Introduction to Mathematical Cosmology; Cambridge University Press: Cambridge, UK, 2001.
  • (9) Narlikar, J.V. An Introduction to Cosmology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002.
  • (10) Hobson, M.P.; Efstathiou, G.P.; ; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006.
  • (11) Roos, M. Introduction to Cosmology; John Wiley and Sons: Hoboken, NJ, USA, 2015.
  • (12) Cuzinatto, R.R.; Gupta, R.P.; Holanda, R.F.L.; Jesus, J.F.; Pereira, S.H. Testing a varying-ΛΛ\Lambdaroman_Λ model for dark energy within co-varying physical couplings framework. Mon. Not. Roy. Astron. Soc. 2022, 515, 5981–5992. https://doi.org/10.1093/mnras/stac2039.
  • (13) Cuzinatto, R.R.; Holanda, R.F.L.; Pereira, S.H. Observational constraints on varying fundamental constants in a minimal CPC model. Mon. Not. Roy. Astron. Soc. 2023, 519, 633–640. https://doi.org/10.1093/mnras/stac3267.
  • (14) Cuzinatto, R.R.; Gupta, R.P.; Pompeia, P.J. Dynamical Analysis of the Covarying Coupling Constants in Scalar–Tensor Gravity. Symmetry 2023, 15, 709. https://doi.org/10.3390/sym15030709.
  • (15) Morin, D. Introduction to Classical Mechanics; Cambridge University Press: Cambridge, UK, 2007.
  • (16) Lee, S. “The cosmological evolution condition of the Planck constant in the varying speed of light models through adiabatic expansion,” Phys. Dark Univ. 42, 101286 (2023) doi:10.1016/j.dark.2023.101286 [arXiv:2212.03728 [astro-ph.CO]].
  • (17) Leibundgut, B. Time dilation in the light curve of the distant type ia supernovae sn 1995k. Astrophys. J. Lett. 1996, 466, L21. https://doi.org/10.1086/310164.
  • (18) Riess, A.G.; Filippenko, A.V.; Leonard, D.C.; Schmidt, B.P.; Suntzeff, N.; Phillips, M.M.; Phillips, M.M.; Schommer, R.; Clocchiatti, A.; Kirshner, R.P.; et al. [Supernova Search Team], Time dilation from spectral feature age measurements of type ia supernovae. Astron. J. 1997, 114, 722. https://doi.org/10.1086/118506.
  • (19) Foley, R.J.; Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Nugent, P.; Perlmutter, S. A Definitive measurement of time dilation in the spectral evolution of the moderate-redshift Type Ia supernova 1997ex. Astrophys. J. Lett. 2005, 626, L11–L14. https://doi.org/10.1086/431241.
  • (20) Blondin, S.; Tonry, J.L. Determining the Type, Redshift, and Age of a Supernova Spectrum. Astrophys. J. 2007, 666, 1024–1047. https://doi.org/10.1086/520494.
  • (21) Blondin, S.; Davis, T.M.; Krisciunas, K.; Schmidt, B.P.; Sollerman, J.; Wood-Vasey, W.M.; Becker, A.C.; Challis, P.; Clocchiatti, A.; Damke, G.; et al. Time Dilation in Type Ia Supernova Spectra at High Redshift. Astrophys. J. 2008, 682, 724–736. https://doi.org/10.1086/589568.
  • (22) Norris, J.P.; Nemiroff, R.J.; Scargle, J.D.; Kouveliotou, C.; Fishman, G.J.; Meegan, C.A.; Paciesas, W.S.; Bonnell, J.T. Detection of signature consistent with cosmological time dilation in gamma-ray bursts. Astrophys. J. 1994, 424, 540. https://doi.org/10.1086/173912.
  • (23) Wijers, R.A.M.J.; Paczynski, B. On the nature of gamma-ray burst time dilations. Astrophys. J. Lett. 1994, 437, L107. https://doi.org/10.1086/187694.
  • (24) Band, D. Cosmological time dilation in gamma-ray bursts? Astrophys. J. Lett. 1994, 432, L23. https://doi.org/10.1086/187502.
  • (25) Meszaros, A.; Meszaros, P. Cosmological evolution and luminosity function effects on number counts, redshift and time dilation of bursting sources. Astrophys. J. 1996, 466, 29. https://doi.org/10.1086/177491.
  • (26) Lee, T.T.; Petrosian, V. Time dilation of batse gamma-ray bursts. Astrophys. J. 1997, 474, 37. https://doi.org/10.1086/303458.
  • (27) Chang, H.Y. Fourier analysis of gamma-ray burst light curves: Searching for direct signature of cosmological time dilation. Astrophys. J. Lett. 2001, 557, L85. https://doi.org/10.1086/323331.
  • (28) Crawford, D.F. No Evidence of Time Dilation in Gamma-Ray Burst Data. arXiv 2009, arXiv:0901.4169.
  • (29) Zhang, F.W.; Fan, Y.Z.; Shao, L.; Wei, D.M. Cosmological Time Dilation in Durations of Swift Long Gamma-Ray Bursts. Astrophys. J. Lett. 2013, 778, L11. https://doi.org/10.1088/2041-8205/778/1/L11.
  • (30) Singh, A.; Desai, S. Search for cosmological time dilation from gamma-ray bursts—A 2021 status update. JCAP 2022, 02, 010. https://doi.org/10.1088/1475-7516/2022/02/010.
  • (31) Hawkins, M.R.S. Time dilation and quasar variability. Astrophys. J. Lett. 2001, 553, L97. https://doi.org/10.1086/320683.
  • (32) Dai, D.C.; Starkman, G.D.; Stojkovic, B.; Stojkovic, D.; Weltman, A. Using quasars as standard clocks for measuring cosmological redshift. Phys. Rev. Lett. 2012, 108, 231302. https://doi.org/10.1103/PhysRevLett.108.231302.
  • (33) Etherington, I.M.H. On the definition of distance in general relativity. Phil. Mag. 1933, 15, 761; reprinted in Gen. Rel. Grav. 2007, 39, 1055–1067.
  • (34) Ellis, G.F.R.; van Elst, H. Cosmological models: Cargese lectures 1998. NATO Sci. Ser. C 1999, 541, 1–116. https://doi.org/10.1007/978-94-011-4455-1_1.
  • (35) Ellis, G.F.R. On the definition of distance in general relativity: I. M. H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761 (1933)). Gen. Rel. Grav. 2007, 39, 1047. https://doi.org/10.1007/s10714-006-0355-5.
  • (36) More, S.; Bovy, J.; Hogg, D.W. Cosmic transparency: A test with the baryon acoustic feature and type Ia supernovae. Astrophys. J. 2009, 696, 1727–1732. https://doi.org/10.1088/0004-637X/696/2/1727.
  • (37) Nair, R.; Jhingan, S.; Jain, D. Cosmic distance duality and cosmic transparency. JCAP 2012, 12, 028. https://doi.org/10.1088/1475-7516/2012/12/028.
  • (38) Wu, P.; Li, Z.; Liu, X.; Yu, H. Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation. Phys. Rev. D 2015, 92, 023520. https://doi.org/10.1103/PhysRevD.92.023520.
  • (39) Ma, C.; Corasaniti, P.S. Statistical Test of Distance–Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations. Astrophys. J. 2018, 861, 124. https://doi.org/10.3847/1538-4357/aac88f.
  • (40) Martinelli, M.; Martins, C.J.A.P.; Nesseris, S.; Sapone, D.; Tutusaus, I.; Avgoustidis, A.; Camera, S.; Carbone, C.; Casas, S.; Ilić, S.; et al. [EUCLID], Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes. Astron. Astrophys. 2020, 644, A80. https://doi.org/10.1051/0004-6361/202039078.
  • (41) Holanda, R.F.L.; Carvalho, J.C.; Alcaniz, J.S. Model-independent constraints on the cosmic opacity. JCAP 2013, 04, 027. https://doi.org/10.1088/1475-7516/2013/04/027.
  • (42) Qi, J.Z.; Zhang, M.J.; Liu, W.B. Observational constraint on the varying speed of light theory. Phys. Rev. D 2014, 90, 063526. https://doi.org/10.1103/PhysRevD.90.063526.
  • (43) Salzano, V.; Dabrowski, M.P.; Lazkoz, R. Measuring the speed of light with Baryon Acoustic Oscillations. Phys. Rev. Lett. 2015, 114, 101304. https://doi.org/10.1103/PhysRevLett.114.101304.
  • (44) Lee, S. Cosmic distance duality as a probe of minimally extended varying speed of light. arXiv, 2021, arXiv:2108.06043.
  • (45) Rodrigues, G.; Bengaly, C. A model-independent test of speed of light variability with cosmological observations. JCAP 2022, 07, 029. https://doi.org/10.1088/1475-7516/2022/07/029.
  • (46) Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. https://doi.org/10.1086/340549.
  • (47) Moresco, M.; Jimenez, R.; Cimatti, A.; Pozzetti, L. Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers. JCAP 2011, 03, 045. https://doi.org/10.1088/1475-7516/2011/03/045.
  • (48) Wei, J.J.; Melia, F.; Wu, X.F. Impact of a Locally Measured H(0) on the Interpretation of Cosmic-chronometer Data. Astrophys. J. 2017, 835, 270. https://doi.org/10.3847/1538-4357/835/2/270.
  • (49) Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope. Mon. Not. Roy. Astron. Soc. 2017, 467, 3239–3254. https://doi.org/10.1093/mnras/stx301.
  • (50) Wei, J.J.; Melia, F. Model-independent Distance Calibration and Curvature Measurement using Quasars and Cosmic Chronometers. The Astrophys. J. 2020, 888, 99. https://doi.org/10.3847/1538-4357/ab5e7d.
  • (51) Moresco, M.; Jimenez, R.; Verde, L.; Cimatti, A.; Pozzetti, L. Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix. Astrophys. J. 2020, 898, 82. https://doi.org/10.3847/1538-4357/ab9eb0.
  • (52) Vagnozzi, S.; Loeb, A.; Moresco, M. Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophys. J. 2021, 908, 84. https://doi.org/10.3847/1538-4357/abd4df.
  • (53) Dhawan, S.; Alsing, J.; Vagnozzi, S. Non-parametric spatial curvature inference using late-Universe cosmological probes. Mon. Not. Roy. Astron. Soc. 2021, 506, L1–L5 https://doi.org/10.1093/mnrasl/slab058.
  • (54) Borghi, N.; Moresco, M.; Cimatti, A.; Huchet, A.; Quai, S.; Pozzetti, L. Toward a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift. Astrophys. J. 2022, 927, 164. https://doi.org/10.3847/1538-4357/ac3240.
  • (55) Borghi, N.; Moresco, M.; Cimatti, A. Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z similar-to\sim 0.7. Astrophys. J. Lett. 2022, 928, L4. https://doi.org/10.3847/2041-8213/ac3fb2.
  • (56) Banerjee, S.; Petronikolou, M.; Saridakis, E.N. Alleviating the H0 tension with new gravitational scalar tensor theories. Phys. Rev. D 2023, 108, 024012 https://doi.org/10.1103/PhysRevD.108.024012.
  • (57) Jalilvand, F.; Mehrabi, A. Model independent estimation of the cosmography parameters using cosmic chronometers. Eur. Phys. J. Plus 2022, 137, 1341. https://doi.org/10.1140/epjp/s13360-022-03551-4.
  • (58) Asimakis, P.; Basilakos, S.; Lymperis, A.; Petronikolou, M.; Saridakis, E.N. Modified gravity and cosmology with nonminimal direct or derivative coupling between matter and the Einstein tensor. Phys. Rev. D 2023, 107, 104006. https://doi.org/10.1103/PhysRevD.107.104006.
  • (59) Kumar, D.; Rani, N.; Jain, D.; Mahajan, S.; Mukherjee, A. Gamma rays bursts: A viable cosmological probe? JCAP 2023, 07, 021. https://doi.org/10.1088/1475-7516/2023/07/021.
  • (60) Li, Z.; Zhang, B.; Liang, N. Testing dark energy models with gamma-ray bursts calibrated from the observational H(z) data through a Gaussian process. Mon. Not. Roy. Astron. Soc. 2023, 521, 4406–4413. https://doi.org/10.1093/mnras/stad838.
  • (61) Lee, S. Constraining minimally extended varying speed of light by cosmological chronometers. Mon. Not. Roy. Astron. Soc. 2023, 522, 3248–3255. https://doi.org/10.1093/mnras/stad1190.
  • (62) Wilson, O.C. Possible Applications of Supernovae to the Study of the Nebular Red Shifts. Astrophys. J. 1939, 90, 634. https://doi.org/10.1086/144134.
  • (63) Lee, S. Constraint on the minimally extended varying speed of light using time dilations in Type Ia supernovae. Mon. Not. Roy. Astron. Soc. 2023, 524, 4019–4023. https://doi.org/10.1093/mnras/stad2084.
  • (64) Lee, S. Cosmography of the Minimally Extended Varying Speed of Light Model. Astronomy 2024, preprints. https://doi.org/10.20944/preprints202402.1598.v1.
  • (65) E.  Tiesinga, P. J.  Mohr, D. B.  Newell, and B. N. Taylor, ”The 2022 CODATA Recommended Values of the Fundamental Physical Constants” (Web Version 9.0).
  • (66) L. Breuval, A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, M. Romaniello, Y. S. Murakami, D. Scolnic, G. S. Anand and I. Soszyński, “Small Magellanic Cloud Cepheids Observed with the Hubble Space Telescope Provide a New Anchor for the SH0ES Distance Ladder,” [arXiv:2404.08038 [astro-ph.CO]].
  • (67) M. Tristram, A. J. Banday, M. Douspis, X. Garrido, K. M. Górski, S. Henrot-Versillé, L. T. Hergt, S. Ilić, R. Keskitalo and G. Lagache, et al. “Cosmological parameters derived from the final Planck data release (PR4),” Astron. Astrophys. 682, A37 (2024) doi:10.1051/0004-6361/202348015 [arXiv:2309.10034 [astro-ph.CO]].
  • (68) D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan and A. G. Riess, et al. Astrophys. J. 859, no.2, 101 (2018) doi:10.3847/1538-4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].
  • (69) M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213-224 (2001) doi:10.1142/S0218271801000822 [arXiv:gr-qc/0009008 [gr-qc]].
  • (70) E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003) doi:10.1103/PhysRevLett.90.091301 [arXiv:astro-ph/0208512 [astro-ph]].
  • (71) M. Betoule et al. [SDSS], Astron. Astrophys. 568, A22 (2014) doi:10.1051/0004-6361/201423413 [arXiv:1401.4064 [astro-ph.CO]].
  • (72) D. M. Scolnic et al. [Pan-STARRS1], Astrophys. J. 859, no.2, 101 (2018) doi:10.3847/1538-4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].
  • (73) R. Arjona, W. Cardona and S. Nesseris, Phys. Rev. D 99, no.4, 043516 (2019) doi:10.1103/PhysRevD.99.043516 [arXiv:1811.02469 [astro-ph.CO]].
  • (74) L. Kazantzidis and L. Perivolaropoulos, Phys. Rev. D 102, no.2, 023520 (2020) doi:10.1103/PhysRevD.102.023520 [arXiv:2004.02155 [astro-ph.CO]].
  • (75) T. Shanks, L. Hogarth and N. Metcalfe, Mon. Not. Roy. Astron. Soc. 484, no.1, L64-L68 (2019) doi:10.1093/mnrasl/sly239 [arXiv:1810.02595 [astro-ph.CO]].
  • (76) T. Shanks, L. M. Hogarth, N. Metcalfe and J. Whitbourn, Mon. Not. Roy. Astron. Soc. 490, no.4, 4715-4720 (2019) doi:10.1093/mnras/stz2863 [arXiv:1909.01878 [astro-ph.CO]].
  • (77) V. V. Luković, B. S. Haridasu and N. Vittorio, Mon. Not. Roy. Astron. Soc. 491, no.2, 2075-2087 (2020) doi:10.1093/mnras/stz3070 [arXiv:1907.11219 [astro-ph.CO]].
  • (78) H. Böhringer, G. Chon and C. A. Collins, Astron. Astrophys. 633, A19 (2020) doi:10.1051/0004-6361/201936400 [arXiv:1907.12402 [astro-ph.CO]].
  • (79) J. Racker, P. Sisterna and H. Vucetich, Phys. Rev. D 80, 083526 (2009) doi:10.1103/PhysRevD.80.083526 [arXiv:0711.0797 [astro-ph]].
  • (80) M. McElhinny, S. Taylor, and D. Stevenson, Nature 271, 316 (1978) https://doi.org/10.1038/271316a0.
  • (81) J. Magueijo, Phys. Rev. D 62, 103521 (2000) doi:10.1103/PhysRevD.62.103521 [arXiv:gr-qc/0007036 [gr-qc]].
  • (82) L. Perivolaropoulos and F. Skara, Phys. Rev. D 104, no.12, 123511 (2021) doi:10.1103/PhysRevD.104.123511 [arXiv:2109.04406 [astro-ph.CO]].
  • (83) R. P. Gupta, Astrophys. J. 964, no.1, 55 (2024) doi:10.3847/1538-4357/ad1bc6 [arXiv:2401.09483 [astro-ph.CO]].
  • (84) V. G. Gueorguiev and A. Maeder, Universe 8, no.4, 213 (2022) doi:10.3390/universe8040213 [arXiv:2202.08412 [gr-qc]].
  • (85) J. P. W. Verbiest, M. Bailes, W. van Straten, G. B. Hobbs, R. T. Edwards, R. N. Manchester, N. D. R. Bhat, J. M. Sarkissian, B. A. Jacoby and S. R. Kulkarni, Astrophys. J. 679, 675-680 (2008) doi:10.1086/529576 [arXiv:0801.2589 [astro-ph]].
  • (86) E. Garcia-Berro, P. Loren-Aguilar, S. Torres, L. G. Althaus and J. Isern, JCAP 05, 021 (2011) doi:10.1088/1475-7516/2011/05/021 [arXiv:1105.1992 [gr-qc]].
  • (87) A. H. Córsico, L. G. Althaus, E. García-Berro and A. D. Romero, JCAP 06, 032 (2013) doi:10.1088/1475-7516/2013/06/032 [arXiv:1306.1864 [astro-ph.SR]].
  • (88) C. Bambi, M. Giannotti and F. L. Villante, Phys. Rev. D 71, 123524 (2005) doi:10.1103/PhysRevD.71.123524 [arXiv:astro-ph/0503502 [astro-ph]].
  • (89) J. Alvey, N. Sabti, M. Escudero and M. Fairbairn, Eur. Phys. J. C 80, no.2, 148 (2020) doi:10.1140/epjc/s10052-020-7727-y [arXiv:1910.10730 [astro-ph.CO]].
  • (90) F. Hofmann, J. Müller, and L. Biskupek, Astron. Astrophys 522, L5 (2010) doi:10.1051/0004-6361/201015659.
  • (91) F. Hofmann and J. Müller, Class. Quant. Grav 35, 035015 (2018).
  • (92) J. Mould and S. Uddin, Publ. Astron. Soc. Austral. 31, 15 (2014) doi:10.1017/pasa.2014.9 [arXiv:1402.1534 [astro-ph.CO]].
  • (93) W. Zhao, B. S. Wright and B. Li, JCAP 10, 052 (2018) doi:10.1088/1475-7516/2018/10/052 [arXiv:1804.03066 [astro-ph.CO]].
  • (94) M. Lagos, M. Fishbach, P. Landry and D. E. Holz, Phys. Rev. D 99, no.8, 083504 (2019) doi:10.1103/PhysRevD.99.083504 [arXiv:1901.03321 [astro-ph.CO]].
  • (95) E. Belgacem et al. [LISA Cosmology Working Group], JCAP 07, 024 (2019) doi:10.1088/1475-7516/2019/07/024 [arXiv:1906.01593 [astro-ph.CO]].